Home
Class 12
MATHS
If log(y)x +log(x)y = 7, then the value ...

If `log_(y)x +log_(x)y = 7`, then the value of `(log_(y)x)^(2) +(log_(x)y)^(2)`, is

A

43

B

45

C

47

D

49

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{y} x + \log_{x} y = 7 \) and find the value of \( (\log_{y} x)^{2} + (\log_{x} y)^{2} \), we can follow these steps: ### Step 1: Use the Change of Base Formula We know that: \[ \log_{x} y = \frac{1}{\log_{y} x} \] Let \( a = \log_{y} x \). Then, we can rewrite \( \log_{x} y \) as: \[ \log_{x} y = \frac{1}{a} \] ### Step 2: Substitute into the Original Equation Substituting these into the original equation gives: \[ a + \frac{1}{a} = 7 \] ### Step 3: Multiply through by \( a \) To eliminate the fraction, multiply the entire equation by \( a \): \[ a^2 + 1 = 7a \] ### Step 4: Rearrange the Equation Rearranging this gives us a standard quadratic equation: \[ a^2 - 7a + 1 = 0 \] ### Step 5: Use the Quadratic Formula We can solve for \( a \) using the quadratic formula: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -7, c = 1 \): \[ a = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{7 \pm \sqrt{49 - 4}}{2} = \frac{7 \pm \sqrt{45}}{2} = \frac{7 \pm 3\sqrt{5}}{2} \] ### Step 6: Calculate \( a^2 + \frac{1}{a^2} \) Now, we need to find \( a^2 + \frac{1}{a^2} \). We can use the identity: \[ a^2 + \frac{1}{a^2} = \left(a + \frac{1}{a}\right)^2 - 2 \] Substituting \( a + \frac{1}{a} = 7 \): \[ a^2 + \frac{1}{a^2} = 7^2 - 2 = 49 - 2 = 47 \] ### Final Answer Thus, the value of \( (\log_{y} x)^{2} + (\log_{x} y)^{2} \) is: \[ \boxed{47} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If log_(y)x+log_(x)y=7 then find the value of (log_(y)x)^(2)+(log_(x)y)^(2)

If log_(x)y= (log_(a)y)/(P) then the value of P is

if log_(2)x+log_(2)y>=6 then the least value of x+y

If log_((x+y))(x - y) = 7 , then the value of log_((x^(2)-y^(2)))(x^(2)+2xy+y^(2)) is ______.

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is

What is the value of log_(y)x^(5)log_(x)y^(2)log_(z)z^(3) ?