Home
Class 12
MATHS
If log(2)(log(4)(x))) = 0, log(3)(log(4)...

If `log_(2)(log_(4)(x))) = 0, log_(3)(log_(4)(log_(2)(y))) = 0` and `log_(4)(log_(2)(log_(3)(z))) = 0` then the sum of x,y and z is-

A

89

B

58

C

105

D

50

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If log_(2)(log_(3)(log_(4)(x)))=0 and log_(3)(log_(4)(log_(2)(y)))=0 and log_(4)(log_(2)(log_(2)(z)))=0 then the sum of x,y and z is _(-)

if log_(2)(log_(3)(log_(4)x))=0 and log_(3)(log_(4)(log_(2)y))=0 and log_(3)(log_(2)(log_(2)z))=0 then find the sum of x,y and z is

If log_2(log_3(log_4(x)))=0, log_3(log_4(log_2(y)))=0 and log_4(log_2(log_3(z)))=0 then the sum of x,y,z is

Solve :log_(4)(log_(3)(log_(2)x))=0

log_(2)(log_(2)(log_(3)x))=log_(2)(log_(2)(log_(2)y))=0 find (x+y)=?

If log_(2)(log_(2)(log_(3)x))=log_(2)(log_(3)(log_(2)y))=0 then the value of (x+y) is

If log_2 (log_3 (log_4 x))= 0, log_4 (log_3 (log_2 y))= 0 and log_3(log_4 (log_2z ))= 0, then the correct option is

log_(2)log_(3)log_(4)(x-1)>0

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :