Home
Class 12
MATHS
Let 3^(a) = 4, 4^(b) = 5, 56(c) = 6, 6&(...

Let `3^(a) = 4, 4^(b) = 5, 56(c) = 6, 6&(d) = 7, 7^(e) = 8` and `8^(f) = 9`. The value of the product (abcdef), is

A

1

B

2

C

`sqrt(6)`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. \( 3^a = 4 \) 2. \( 4^b = 5 \) 3. \( 5^c = 6 \) 4. \( 6^d = 7 \) 5. \( 7^e = 8 \) 6. \( 8^f = 9 \) We need to find the product \( abcdef \). ### Step 1: Express each variable in terms of logarithms We can take logarithms on both sides of each equation to express \( a, b, c, d, e, \) and \( f \): 1. \( a = \frac{\log 4}{\log 3} \) 2. \( b = \frac{\log 5}{\log 4} \) 3. \( c = \frac{\log 6}{\log 5} \) 4. \( d = \frac{\log 7}{\log 6} \) 5. \( e = \frac{\log 8}{\log 7} \) 6. \( f = \frac{\log 9}{\log 8} \) ### Step 2: Write the product \( abcdef \) Now we can write the product \( abcdef \): \[ abcdef = \left(\frac{\log 4}{\log 3}\right) \left(\frac{\log 5}{\log 4}\right) \left(\frac{\log 6}{\log 5}\right) \left(\frac{\log 7}{\log 6}\right) \left(\frac{\log 8}{\log 7}\right) \left(\frac{\log 9}{\log 8}\right) \] ### Step 3: Simplify the product Notice that in the product, many terms will cancel out: \[ abcdef = \frac{\log 4}{\log 3} \cdot \frac{\log 5}{\log 4} \cdot \frac{\log 6}{\log 5} \cdot \frac{\log 7}{\log 6} \cdot \frac{\log 8}{\log 7} \cdot \frac{\log 9}{\log 8} \] After cancellation, we are left with: \[ abcdef = \frac{\log 9}{\log 3} \] ### Step 4: Simplify further We can simplify \( \frac{\log 9}{\log 3} \): Since \( 9 = 3^2 \), we have: \[ \log 9 = \log(3^2) = 2 \log 3 \] Thus, \[ abcdef = \frac{2 \log 3}{\log 3} = 2 \] ### Final Answer The value of the product \( abcdef \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let 3^(a)=4,4^(b)=5,5^(c)=6,6^(d)=7,7^(e)=8 and 8^(f)=9, Then the value of the product (abcdef) is

(a) 9-5 = (b) 9+0 = (c) 9-0 = (d) 5-5 = (e) 6+6 = (f) 8+8 =

(A) 7 (B) 8 (C) 6 (D) 9

If A = {1, 3, 9, 10, 21), B= {4, 6, 8, 10} and C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then the value of A cap (B cap C) is

if U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, B = { 2, 4, 6, 8} and C = {3, 4, 5, 6} then find the value of (B - C)'.

If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, B = { 2, 4, 6, 8} and C = {3, 4, 5, 6} then find the value of B nn C' .

If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, B = { 2, 4, 6, 8} and C = {3, 4, 5, 6} then find the value of (B -C)' .

Data :   4 , 7 ,9 , 3 , 4 , 5, 3 , 6 ,7 ,6 ,8 , 6 ,7 , 6 , 5 , 6 ,8 , 6 , 5 and 4 ; then find the mode