Home
Class 12
MATHS
Given log(10)2 = a and log(10)3 = b. If ...

Given `log_(10)2 = a` and `log_(10)3 = b`. If `3^(x+2) = 45`, then the value of x in terms of a and b is-

A

`(a-1)/(b)`

B

`(1-a)/(b)`

C

`(1+a)/(b)`

D

`(b)/(1-a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3^{x+2} = 45\) and express \(x\) in terms of \(a\) and \(b\) where \( \log_{10} 2 = a\) and \( \log_{10} 3 = b\), follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ 3^{x+2} = 45 \] ### Step 2: Isolate \(3^x\) We can rewrite \(45\) as \(9 \times 5\) or \(3^2 \times 5\): \[ 3^{x+2} = 3^2 \times 5 \] This implies: \[ 3^{x+2} = 3^2 \cdot 5 \] Now, we can express \(3^{x}\) as: \[ 3^x = \frac{45}{3^2} = 5 \] ### Step 3: Take logarithm of both sides Taking logarithm base 10 on both sides: \[ \log_{10}(3^x) = \log_{10}(5) \] ### Step 4: Use logarithm properties Using the property of logarithms \( \log_{10}(a^b) = b \cdot \log_{10}(a)\): \[ x \cdot \log_{10}(3) = \log_{10}(5) \] ### Step 5: Solve for \(x\) Now, isolate \(x\): \[ x = \frac{\log_{10}(5)}{\log_{10}(3)} \] ### Step 6: Express \(\log_{10}(5)\) in terms of \(a\) and \(b\) We can express \(\log_{10}(5)\) using the change of base formula: \[ \log_{10}(5) = \log_{10}\left(\frac{10}{2}\right) = \log_{10}(10) - \log_{10}(2) = 1 - a \] Thus: \[ x = \frac{1 - a}{b} \] ### Final Answer The value of \(x\) in terms of \(a\) and \(b\) is: \[ x = \frac{1 - a}{b} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If log_(10)5=a and log_(10)3=b ,then

if log_(10)5=a and log_(10)3=b then:

If log_(10)a=b , then fnd the value of 10^(3b) in terms of a.

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

Let log_(10)2=a and log_(10)3=b then determinant the following logarithms in terms of a and b

If log_(10)2 log_(2)10 + log_(10)(10^(x)) =2 , then what is the value of x?

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

If log_(10)x=a, find the values of 10^(a-1) in terms of x.

If log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6) in terms of a and b is equal to

Let log_(10)2=a and log_(10)3=b determine the following in term of a and b (i) log_(4)100+2log_(27)100 (ii) log_(144)sqrt(45)