Home
Class 12
MATHS
If log(sqrt(2)) sqrt(x) +log(2) + log(4)...

If `log_(sqrt(2)) sqrt(x) +log_(2) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40` then x is equal to-

A

8

B

16

C

32

D

256

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

If log_(2)x xx log_(2)"" (x)/(16) + 4 = 0 , then x is equal to

log_(2)sqrt(x)+log_(2)sqrt(x)=4

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

If log_(4) x + log_(8)x^(2) + log_(16)x^(3) = (23)/(2) , then log_(x) 8 =

Solve log_((pi)/(2))(sqrt(x))+2log_(4x)(x^(2))=3log_(2x)(x^(3))

Solve: 4log_((x)/(2))(sqrt(x))+2log_(4x)(x^(2))=3log_(2x)(x^(3))

sqrt(log_(3)(3x^(2))log_(9)(81x))=log_(9)x^(3)

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))