Home
Class 12
MATHS
The expression sqrt(sin^(4)(37.5)^(@)+4c...

The expression `sqrt(sin^(4)(37.5)^(@)+4cos^(2)(37.5)^(@)) +sqrt(cos^(4)(37.5)^(@)+4sin^(2)(37.5)^(@))` simplifies to

A

an irrational number

B

a prime number

C

a natural number which is not composite

D

a real number of the form `a + sqrt(b)` where a and b are prime

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

cos^(2)(97.5^(@))-sin^(2)(37.5^(@)) is equal to-

The value of cos(127.5^(@))*cos(7.5^(@))-cos(37.5^(@)).sin(187.5^(@)) is

4sin23^(@)sin37^(@)sin83^(@)=

" The value of ((sin17^(@))(cos13^(@))+(cos17^(@))(sin13^(@)))/((cos23^(@))(cos37^(@))-(sin157^(@))(sin37^(@))) is equal to

cos51^(@)-sin39^(@)+sin37^(@)-cos53^(@)=?

The value of (cos53^(@)-sin37^(@)) is

4backslash sin23^(@)sin37^(@)sin83^(@)=

The value of the ,, sin ^ (2) 37 ^ (@), sin ^ (2) 53 ^ (@), - tan ^ (2) 225 ^ (@) sin ^ (2) 53 ^ (@), -tan ^ (2) 135 ^ (@), sin ^ (2) 37 ^ (@) - tan ^ (2) 315 ^ (@), sin ^ (2) 37 ^ (@), sin ^ (2) 53 ^ (@)] | is

Find the resultant of the following forces. [sin 37^(@) = (3)/(5) ,cos 37^(@) = (4)/(5) , sin 53^(@) = (4)/(5) , cos 53^(@) = (3)/(5)]

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot