Home
Class 12
MATHS
Suppose that, log(10) (x-2) + log(10) y=...

Suppose that, `log_(10) (x-2) + log_(10) y=0` and `sqrt(x)+sqrt(y-2)=sqrt(x+y)`. Then the value of `(x + y)`, is

A

2

B

`2sqrt(2)`

C

`2+2sqrt(2)`

D

`4+2sqrt(2)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Suppose that log_10(x-2)+log_10y=0 sqrtx+sqrt(y-2)=sqrt(x+y) . If x^(2t^2-6)+y^(6-2t^2)=6 ,, the value of t_1,t_2,t_3,t_4 is

If log_(10)x+log_(10)y=2, x-y=15 then :

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

If 3 log_(10) (x^(2) y) = 4 + 2 log_(10) x - log_(10) y , where x and y are both + ve, and x - y = 2 sqrt(6) , then the value of x is

If x=log_(0.1)0.001,y=log_(9)81, then sqrt(x-2sqrt(y))=

If y=ln((x+(sqrt(a^(2)+x^(2)))/(a)) then the value of ((dy)/(dx)) is

If y=ln{(x+sqrt(a^(2)+x^(2)))/(a)}, then the value of (dy)/(dx) is-