Home
Class 12
MATHS
If (4+3sqrt5)/(4-3sqrt5)=a+bsqrt5,a, b a...

If `(4+3sqrt5)/(4-3sqrt5)=a+bsqrt5`,a, b are rational numbers, them (a, b)=

A

`(61/29,(-24)/29)`

B

`((-61)/29,24/29)`

C

`(61/29,24/29)`

D

`((-61)/29,(-24)/29)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{4 + 3\sqrt{5}}{4 - 3\sqrt{5}} = a + b\sqrt{5}\), where \(a\) and \(b\) are rational numbers, we will follow these steps: ### Step 1: Rationalize the denominator To eliminate the square root in the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator, which is \(4 + 3\sqrt{5}\). \[ \frac{(4 + 3\sqrt{5})(4 + 3\sqrt{5})}{(4 - 3\sqrt{5})(4 + 3\sqrt{5})} \] ### Step 2: Simplify the denominator Using the difference of squares formula \(a^2 - b^2\), we can simplify the denominator: \[ (4 - 3\sqrt{5})(4 + 3\sqrt{5}) = 4^2 - (3\sqrt{5})^2 = 16 - 45 = -29 \] ### Step 3: Expand the numerator Now, we expand the numerator: \[ (4 + 3\sqrt{5})(4 + 3\sqrt{5}) = 4^2 + 2 \cdot 4 \cdot 3\sqrt{5} + (3\sqrt{5})^2 = 16 + 24\sqrt{5} + 45 = 61 + 24\sqrt{5} \] ### Step 4: Combine the results Now, we can combine the results from the numerator and the denominator: \[ \frac{61 + 24\sqrt{5}}{-29} = \frac{61}{-29} + \frac{24\sqrt{5}}{-29} = -\frac{61}{29} - \frac{24}{29}\sqrt{5} \] ### Step 5: Identify \(a\) and \(b\) From the expression \(-\frac{61}{29} - \frac{24}{29}\sqrt{5}\), we can identify: \[ a = -\frac{61}{29}, \quad b = -\frac{24}{29} \] Thus, the values of \(a\) and \(b\) are: \[ (a, b) = \left(-\frac{61}{29}, -\frac{24}{29}\right) \] ### Final Answer \[ (a, b) = \left(-\frac{61}{29}, -\frac{24}{29}\right) \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If (4+3sqrt(5))/(4-3sqrt(5))=a+b sqrt(5)

If (4+2sqrt5)/(4-3sqrt5) = a+bsqrt5 ,then

If (4+3sqrt(5))/(sqrt(5))=a+b sqrt(5), bis

If (4+3sqrt5)/(4-3sqrt5)=-61/29+bsqrt5 then b=

If (3-2sqrt(5))/(6-sqrt(5))=a+bsqrt(c) where a and b are rational numbers, then what are the values of a and b ?

If (3+2sqrt(5))/(4-2sqrt(5))=p+qsqrt(5) where p and q are rational numbers, then values of p and q respectively are

if a and b are rational numbers and (4+3sqrt(5))/(4-3sqrt(5))=a+b sqrt(5) then find the value of a and b

if (4+3sqrt(5))/(sqrt(5))=a+b sqrt(5) then the value of b is

Express 1-(1)/(1+sqrt(3))+(1)/(1-sqrt(3)) in the form a+bsqrt(3) , where a and b are rational numbers, then the values of a and b respectively are

Write two rational numbers between sqrt(3) and sqrt(5).