Home
Class 12
MATHS
sqrt(21-4sqrt5+8sqrt3-4sqrt12)=...

`sqrt(21-4sqrt5+8sqrt3-4sqrt12)=`

A

`sqrt5-2+2sqrt3`

B

`-sqrt5-sqrt4-sqrt12`

C

`-sqrt5+sqrt4+sqrt12`

D

`-sqrt5-sqrt4+sqrt12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{12}} \), we will follow these steps: ### Step 1: Simplify the expression inside the square root We start with the expression: \[ 21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{12} \] First, we simplify \( \sqrt{12} \): \[ \sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} \] Thus, we can rewrite the expression: \[ 21 - 4\sqrt{5} + 8\sqrt{3} - 4(2\sqrt{3}) = 21 - 4\sqrt{5} + 8\sqrt{3} - 8\sqrt{3} \] This simplifies to: \[ 21 - 4\sqrt{5} \] ### Step 2: Rewrite \( 21 - 4\sqrt{5} \) Next, we can express \( 21 \) as \( 20 + 1 \): \[ 21 - 4\sqrt{5} = (20 + 1) - 4\sqrt{5} \] ### Step 3: Recognize the expression as a perfect square We can rewrite \( 20 \) as \( (2\sqrt{5})^2 \): \[ 21 - 4\sqrt{5} = (2\sqrt{5})^2 + 1^2 - 2 \cdot 2\sqrt{5} \cdot 1 \] This is in the form of \( a^2 + b^2 - 2ab \), which can be factored as: \[ (a - b)^2 \] Thus: \[ 21 - 4\sqrt{5} = (2\sqrt{5} - 1)^2 \] ### Step 4: Take the square root Now we take the square root of the entire expression: \[ \sqrt{21 - 4\sqrt{5}} = \sqrt{(2\sqrt{5} - 1)^2} \] This simplifies to: \[ 2\sqrt{5} - 1 \] ### Final Answer Thus, the final answer is: \[ \sqrt{21 - 4\sqrt{5} + 8\sqrt{3} - 4\sqrt{12}} = 2\sqrt{5} - 1 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

sqrt(3)sqrt(4)sqrt(12)=

Find the square root of 21 - 4sqrt5 + 8sqrt3 - 4 sqrt15

3sqrt2+4sqrt2+12sqrt32

(sqrt(12)+sqrt(5)+sqrt(3))/(sqrt(12)-sqrt(5)-sqrt(3))+(sqrt(20)+sqrt(5)+sqrt(3))/(sqrt(20)-sqrt(5)-sqrt(3))

The value of sqrt(( sqrt(12) -sqrt(8))(sqrt(3)+sqrt(2))/(5+sqrt(24)) is

if B=(12)/(3+sqrt(5)+sqrt(8)) and A=sqrt(1)+sqrt(5)+sqrt(8)-sqrt(10) then value of log_(A)B is

4 sin 27^(0)= 1) sqrt(5+sqrt(5))+sqrt(3-sqrt(5)) 2) sqrt(5-sqrt(5))+sqrt(3+sqrt(5) 3) sqrt(5+sqrt(5))-sqrt(3-sqrt(5)) 4) sqrt(5+sqrt(5))+sqrt(3+sqrt(5)