Home
Class 12
MATHS
If 4/(2+sqrt3+sqrt7)=sqrta+sqrtb-sqrtc,t...

If `4/(2+sqrt3+sqrt7)=sqrta+sqrtb-sqrtc`,then which of the following can be ture -

A

a=1, b=4/3, c=7/3

B

`a=1, b=2/3, c=7/9

C

a=2/3, b=1, c=7/3

D

a= 7/9, b=4/3, c=1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{4}{2 + \sqrt{3} + \sqrt{7}} = \sqrt{a} + \sqrt{b} - \sqrt{c} \), we will manipulate the left-hand side to match the right-hand side. ### Step-by-step Solution: 1. **Rationalize the Denominator**: We start with the expression \( \frac{4}{2 + \sqrt{3} + \sqrt{7}} \). To simplify this, we can multiply the numerator and the denominator by the conjugate of the denominator, which is \( 2 + \sqrt{3} - \sqrt{7} \). \[ \frac{4(2 + \sqrt{3} - \sqrt{7})}{(2 + \sqrt{3} + \sqrt{7})(2 + \sqrt{3} - \sqrt{7})} \] 2. **Calculate the Denominator**: The denominator can be simplified using the difference of squares formula: \[ (2 + \sqrt{3})^2 - (\sqrt{7})^2 \] First, calculate \( (2 + \sqrt{3})^2 \): \[ (2 + \sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] Now, calculate \( \sqrt{7}^2 = 7 \). Therefore, the denominator becomes: \[ (7 + 4\sqrt{3}) - 7 = 4\sqrt{3} \] 3. **Simplify the Expression**: Now we can substitute back into our expression: \[ \frac{4(2 + \sqrt{3} - \sqrt{7})}{4\sqrt{3}} = \frac{2 + \sqrt{3} - \sqrt{7}}{\sqrt{3}} \] This can be separated into individual fractions: \[ \frac{2}{\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{3}} - \frac{\sqrt{7}}{\sqrt{3}} = \frac{2}{\sqrt{3}} + 1 - \frac{\sqrt{7}}{\sqrt{3}} \] 4. **Combine the Terms**: We can express the terms as: \[ 1 + \frac{2 - \sqrt{7}}{\sqrt{3}} \] To express \( \frac{2 - \sqrt{7}}{\sqrt{3}} \) in a more manageable form, we can rewrite it as: \[ \sqrt{\frac{4}{3}} - \sqrt{\frac{7}{3}} \] 5. **Final Form**: Thus, we can express the entire left-hand side as: \[ \sqrt{\frac{4}{3}} + 1 - \sqrt{\frac{7}{3}} \] This matches the form \( \sqrt{a} + \sqrt{b} - \sqrt{c} \) where: - \( a = \frac{4}{3} \) - \( b = 1 \) - \( c = \frac{7}{3} \) ### Conclusion: From the above steps, we can conclude that the values of \( a \), \( b \), and \( c \) are: - \( a = \frac{4}{3} \) - \( b = 1 \) - \( c = \frac{7}{3} \) Thus, the correct option that matches is the first option.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

( sqrt3 + sqrt7)^2

(sqrt3 + sqrt7)^2

(sqrt7-sqrt3)^2

sqrt7 - 3/5 sqrt7 + 2sqrt7

sqrt(7+4sqrt3) - sqrt(7-4sqrt3) =

(sqrta + sqrtb)^2 = ?

If sqrt(9+sqrt48-sqrt32-sqrt24)=sqrta-sqrtb+2 ,where a,b inN , then find the value of a + b.

4sqrt(3)-7sqrt(12)+2sqrt(75)=