Home
Class 12
MATHS
If (5+2sqrt6)^(x^(2)-3)+(5-2sqrt6)^(x^(2...

If `(5+2sqrt6)^(x^(2)-3)+(5-2sqrt6)^(x^(2)-3)=10`, then x =

A

2,2

B

`sqrt2,-sqrt2`

C

`2,+sqrt2`

D

`2,-2,sqrt2,-sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((5 + 2\sqrt{6})^{x^2 - 3} + (5 - 2\sqrt{6})^{x^2 - 3} = 10\), we can follow these steps: ### Step 1: Set a substitution Let \(y = x^2 - 3\). Then, the equation becomes: \[ (5 + 2\sqrt{6})^y + (5 - 2\sqrt{6})^y = 10 \] ### Step 2: Analyze the terms Notice that \(5 + 2\sqrt{6}\) and \(5 - 2\sqrt{6}\) are conjugates. Let's denote: \[ a = 5 + 2\sqrt{6} \quad \text{and} \quad b = 5 - 2\sqrt{6} \] ### Step 3: Find the product of \(a\) and \(b\) Calculate \(ab\): \[ ab = (5 + 2\sqrt{6})(5 - 2\sqrt{6}) = 5^2 - (2\sqrt{6})^2 = 25 - 24 = 1 \] ### Step 4: Use properties of exponents Since \(ab = 1\), we have: \[ b = \frac{1}{a} \] Thus, we can rewrite the equation as: \[ a^y + \left(\frac{1}{a}\right)^y = 10 \] This simplifies to: \[ a^y + \frac{1}{a^y} = 10 \] ### Step 5: Set \(z = a^y\) Now, let \(z = a^y\). The equation becomes: \[ z + \frac{1}{z} = 10 \] ### Step 6: Multiply through by \(z\) Multiply both sides by \(z\) (assuming \(z \neq 0\)): \[ z^2 + 1 = 10z \] Rearranging gives: \[ z^2 - 10z + 1 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ z = \frac{10 \pm \sqrt{10^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{10 \pm \sqrt{100 - 4}}{2} = \frac{10 \pm \sqrt{96}}{2} = \frac{10 \pm 4\sqrt{6}}{2} = 5 \pm 2\sqrt{6} \] ### Step 8: Find \(y\) We have two cases for \(z\): 1. \(z = 5 + 2\sqrt{6}\) 2. \(z = 5 - 2\sqrt{6}\) Since \(z = a^y\), we can take the logarithm: 1. For \(z = 5 + 2\sqrt{6}\): \[ a^y = 5 + 2\sqrt{6} \implies y = 1 \] 2. For \(z = 5 - 2\sqrt{6}\): \[ a^y = 5 - 2\sqrt{6} \implies y = -1 \] ### Step 9: Substitute back for \(y\) Recall \(y = x^2 - 3\): 1. If \(y = 1\): \[ x^2 - 3 = 1 \implies x^2 = 4 \implies x = \pm 2 \] 2. If \(y = -1\): \[ x^2 - 3 = -1 \implies x^2 = 2 \implies x = \pm \sqrt{2} \] ### Step 10: Final solutions Thus, the values of \(x\) are: \[ x = 2, -2, \sqrt{2}, -\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If (5+2sqrt(6))^(x^(2)-3)+(5-2sqrt(6))^(x^(2)-3)=10 then x=(i)+-2,+-sqrt(2)(ii+-1,+-sqrt(2) (iii) +-4,+-sqrt(2)(iv)+-sqrt(5),+-sqrt(2)

If (5+2sqrt(6))^(x^2-3)+(5-2sqrt(6))^(x^2-3)=10, then x=----------

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : Number of solution (s) of the given equation is/ are -

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : Sum of positive solutions is

If (5+2sqrt6)^(x^(2)-8)+(5-2sqrt6)^(x^(2)-8)=10, x inR On the basis of above information, answer the following questions : If x in (-3,5) , then number of possible values of x, is-

Find product of all real values of x satisfying (5+2sqrt(6))^(x^(2)-3)+(5-2sqrt(6))^(x^(2)-3)=10

Solve for x:(5+2sqrt(6))^(x^(2)-3)+(5-2sqrt(6))^(x^(2)-3)=10

Solve for x:(5+2sqrt(6))^(x^(2)-3)+(5-2sqrt(6))^(x^(2)-3)=10