Home
Class 12
MATHS
(((625)^(-1//2))^(-1//4))^(2)=...

`(((625)^(-1//2))^(-1//4))^(2)=`

A

4

B

5

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((((625)^{-1/2})^{-1/4})^{2}\), we will follow the properties of exponents step by step. ### Step 1: Rewrite the expression We start with the expression: \[ (((625)^{-1/2})^{-1/4})^{2} \] ### Step 2: Apply the exponent multiplication rule Using the property of exponents that states \((a^m)^n = a^{m \cdot n}\), we can simplify the expression: \[ (625)^{-1/2 \cdot -1/4 \cdot 2} \] ### Step 3: Calculate the exponent Now, we calculate the exponent: \[ -1/2 \cdot -1/4 \cdot 2 = \frac{1}{2} \cdot \frac{1}{4} \cdot 2 \] Calculating this step-by-step: 1. \(-1/2 \cdot -1/4 = 1/8\) 2. \(1/8 \cdot 2 = 1/4\) Thus, the exponent simplifies to: \[ (625)^{1/4} \] ### Step 4: Simplify \(625^{1/4}\) Next, we need to evaluate \(625^{1/4}\). We know that: \[ 625 = 5^4 \] Therefore: \[ 625^{1/4} = (5^4)^{1/4} = 5^{4 \cdot 1/4} = 5^1 = 5 \] ### Final Answer The final result of the expression \((((625)^{-1/2})^{-1/4})^{2}\) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

(625)^(-3/4)

[{(625)^(-(1)/(4))}^(-(1)/(2))]^(2)

128^(-(2)/(7))-(625^(-3))^(-(1)/(4))+14(2401)^(-(1)/(4))

Simplify: ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))xx(81)^((1)/(4)))

Simplify: ((6.25)^(1/2) xx (0.0144)^(1/2)+ 1)/((0.027)^(1/3)xx (81)^(1/4))

(1) Simplify (1)/((27)^(-(1)/(3)))+(1)/((625)^(-(1)/(4)))*(2) find the smallest of the numbers 6^((1)/(3)),24(1)/(4),8^((1)/(4))

Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))^(-2//3)+(1)/(((256)/(625))^(1//4))+((sqrt(25))/(root(3)(64)))) .

(64/125)^(-2/3)+(256/625)^(-1/4)+(3/7)^0=