Home
Class 12
MATHS
(5(8^(1//3)+27^(1//3))^(3))^(1//4)=...

`(5(8^(1//3)+27^(1//3))^(3))^(1//4)`=

A

3

B

6

C

5

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((5(8^{1/3} + 27^{1/3})^3)^{1/4}\), we can follow these steps: ### Step 1: Simplify the cube roots First, we simplify \(8^{1/3}\) and \(27^{1/3}\): - \(8^{1/3} = 2\) (since \(2^3 = 8\)) - \(27^{1/3} = 3\) (since \(3^3 = 27\)) So, we can rewrite the expression as: \[ (5(2 + 3)^3)^{1/4} \] ### Step 2: Add the values inside the parentheses Now, we calculate \(2 + 3\): \[ 2 + 3 = 5 \] Thus, the expression becomes: \[ (5(5)^3)^{1/4} \] ### Step 3: Calculate \(5^3\) Next, we calculate \(5^3\): \[ 5^3 = 125 \] Now, we can rewrite the expression as: \[ (5 \times 125)^{1/4} \] ### Step 4: Multiply the values Now, we multiply \(5\) and \(125\): \[ 5 \times 125 = 625 \] So, the expression now is: \[ (625)^{1/4} \] ### Step 5: Calculate the fourth root Finally, we find the fourth root of \(625\): \[ 625 = 5^4 \quad \text{(since } 5^4 = 625\text{)} \] Thus, \[ (625)^{1/4} = 5 \] ### Final Answer The value of the expression \((5(8^{1/3} + 27^{1/3})^3)^{1/4}\) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate (i) (1^(3) + 2^(3) + 3^(3))^((1)/(2)) (ii) [5(8^((1)/(2)) +27^((1)/(3)))^(3)]^((1)/(4)) (iii) (2^(0) + 7^(0))/(5^(0)) (iv) [(16)^((1)/(2))]^((1)/(2))

Find the values of :- (1) (8)^(1//3) (2) (64)^(1//2) (3) 4^(5//2) (4) (36)^(3//2) (5) (27)^(2//3)

simplify (i) (1^(3)+2^(3)+3^(3))^(1/2) (ii) (3/5)^(4)(8/5)^(-12)(32/5)^(6) ,(iii) (1/27)^(-2/3) (vi) [((625)^(-1/2)))^(-1/4)]^(2) ,(v) (9^(1/3)xx27^(-1/2))/(3^(1/6)xx3^(-2/3)) (vi) 64^(-1/3)[64^(1/3)-64^(2/3)] (8^(1/3)xx16^(1/3))/(32^(-1/3)

Simplify. (i) ((15^(1//3))/(9^(1//4)))^(-6) (ii) ((12^(1//5))/(27^(1//5)))^(5//2) (iii) ((15^(1//4))/(3^(1//2)))^(-2)

Evaluate : (27)^(-(1)/(3)).(27)^(-(1)/(3))[(27)^((1)/(3))-(27)^((2)/(3))]

3+(1)/(4)(3+8)+(1)/(4)

Simplify 27^((1)/(3))[27^((1)/(3))-27^((2)/(3))]

Simplify ( i ) (((1)/(3))^(-2)-((1)/(2))^(-3)}-:((1)/(4))^(-2)*( ii) ((5)/(8))^(-7)xx((8)/(5))^(-5)