Home
Class 12
MATHS
(1^(3)+2^(3)+3^(3)+4^(3))^(-3//2)=...

`(1^(3)+2^(3)+3^(3)+4^(3))^(-3//2)=`

A

`10^(-3)`

B

`10^(-2)`

C

`10^(-4)`

D

`10^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1^{3}+2^{3}+3^{3}+4^{3})^{(-3/2)}\), we will break it down step by step. ### Step 1: Calculate the cubes First, we need to calculate the cubes of the numbers from 1 to 4. \[ 1^3 = 1 \] \[ 2^3 = 8 \] \[ 3^3 = 27 \] \[ 4^3 = 64 \] ### Step 2: Sum the cubes Next, we sum these values together. \[ 1 + 8 + 27 + 64 = 100 \] ### Step 3: Raise the sum to the power of \(-3/2\) Now, we take the result from Step 2 and raise it to the power of \(-3/2\). \[ (100)^{-3/2} \] ### Step 4: Simplify the exponent The exponent \(-3/2\) can be interpreted as follows: \[ (100)^{-3/2} = \frac{1}{(100)^{3/2}} \] ### Step 5: Calculate \(100^{3/2}\) To compute \(100^{3/2}\), we can first find \(100^{1/2}\) (which is the square root of 100) and then raise it to the power of 3. \[ 100^{1/2} = 10 \] \[ 10^3 = 1000 \] ### Step 6: Substitute back Now we substitute back into our expression: \[ (100)^{-3/2} = \frac{1}{1000} \] ### Final Answer Thus, the final result is: \[ \frac{1}{1000} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If 1^(3) + 2^(3) + 3^(3) + 4^(3) + ……….. + 10^(3) =

1^(3)+2^(3)+3^(3)+...+n^(3)=n^(2)((n+1)^(2))/(4)

Evaluate (1) 2^(-3) (2)(-4)^(-2) (3)1/3^(-2) (4)(1/2)^(-5)

(((1)/(2))*((2)/(2)))/(1^(3))+(((2)/(2))*((3)/(2)))/(1^(3)+2^(3))+(((3)/(2))*((4)/(2)))/(1^(3)+2^(3)+3^(3))+...=

Simplify: {(1/3)^(-3)-\ (1/2)^(-3)}-:(1/4)^(-3)

Simplify: {(1/3)^(-3)-\ (1/2)^(-3)}-:(1/4)^(-3)

If the sum of the first 15 terms of the series ((3)/(4))^(3)+(1(1)/(2))^(3)+(2(1)/(4))^(3)+3^(3)+(3(3)/(4))^(3)+... is equal to 225k, then k is equal to

Find the value of : (a) ((-2)/(3))^(5)times((-3)/(2))^(3) (b) ((3)/(4))^(3)-((1)/(2))^(3)