Home
Class 12
MATHS
{4sqrt((1/x)^(-12))}^(-2//3)=...

`{4sqrt((1/x)^(-12))}^(-2//3)=`

A

`1/x^(2)`

B

`1/x^(4)`

C

`1/x^(3)`

D

`1/x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \({4\sqrt{(1/x)^{-12}}}^{(-2/3)}\), we will simplify it step by step. ### Step 1: Rewrite the expression The expression can be rewritten using the property of roots: \[ 4\sqrt{(1/x)^{-12}} = (1/x)^{-12} \text{ raised to the power of } \frac{1}{4} \] Thus, we have: \[ (1/x)^{-12} = \left((1/x)^{-12}\right)^{\frac{1}{4}} \] ### Step 2: Apply the exponent Now, we apply the exponent \(-\frac{2}{3}\) to the entire expression: \[ \left((1/x)^{-12}\right)^{\frac{1}{4}} = (1/x)^{-12 \cdot \frac{1}{4}} = (1/x)^{-3} \] So, we can rewrite the expression as: \[ (1/x)^{-3} = (1/x)^{3} \] ### Step 3: Simplify the expression Now, we can simplify \((1/x)^{3}\): \[ (1/x)^{3} = \frac{1}{x^3} \] ### Final Result Thus, the final simplified expression is: \[ \frac{1}{x^3} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

12+9sqrt((x-1)(3x+2))=3x^(2)-x

If Delta (x) =|{:(4x-4,(x-2)^(2),x^(3)),(8x-4sqrt(2),(x-2sqrt(2)^(2)),(x+1)^(3)),(12x-4sqrt(3),(x-2sqrt(3))^(2),(x-1)^(3)):}| then

If Delta(x)=|{:(4x-4,(x-2)^2,x^3),(8x-4sqrt2,(x-2sqrt2)^2,(x+1)^3),(12x-4sqrt3,(x-2sqrt3)^2,(x-1)^3):}| . Then the coefficient of x in Delta(x) is

min[(x_(1)-x_(2))^(2)+(3+sqrt(1-x_(1)^(2))-sqrt(4x_(2)))],AA x_(1),x_(2)in R is (a)4sqrt(5)+1 (b) 3-2sqrt(2)(c)sqrt(5)+1(d)sqrt(5)-1

The value of f(x,y)=((4sqrt(x^(3)y)-4sqrt(x^(3)))/(sqrt(y)-sqrt(x))+(1+sqrt(xy))/(4sqrt(xy)))^(-2)(1+2sqrt((y)/(x))+(y)/(x))^((1)/(2)) when x=9,y=0.04

The value of cos^(-1)[cot(sin^(-1)(sqrt((2-sqrt(3))/(4)))+cos^(-1)((sqrt(12))/(4))+sec^(-1)sqrt(2))

The domain of the function f(x)=(sqrt(x^(12)-x^(3)+x^(4)-x+1))/(2sqrt(2{x}^(2)-3{x}+1)) (where {} denotes the fractional part functio) is

lim_(x rarr0)(3sqrt(1+x^(2))-4sqrt(1-2x))/(x+x^(2)) is equal to

If (2+sqrt(3))^(x^(2)-1)+(2-sqrt(3))^(x^(2)-1)=4 then x= ?

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)