Home
Class 12
MATHS
If 4sqrt(3sqrt(x^(2)))=x^(k), then k=...

If `4sqrt(3sqrt(x^(2)))=x^(k),` then k=

A

`2/6`

B

6

C

`1/6`

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4\sqrt{3\sqrt{x^2}} = x^k \), we will simplify the left-hand side and find the value of \( k \). ### Step-by-Step Solution: 1. **Simplify the Left Side**: \[ 4\sqrt{3\sqrt{x^2}} = 4\sqrt{3 \cdot x} \quad \text{(since } \sqrt{x^2} = x \text{)} \] 2. **Rewrite the Square Root**: \[ 4\sqrt{3x} = 4(3x)^{1/2} \] 3. **Express in Exponential Form**: \[ 4(3x)^{1/2} = 4 \cdot 3^{1/2} \cdot x^{1/2} \] 4. **Combine the Constants**: \[ = 4 \cdot \sqrt{3} \cdot x^{1/2} \] 5. **Set Equal to Right Side**: Now we have: \[ 4\sqrt{3} \cdot x^{1/2} = x^k \] 6. **Equate the Exponents**: Since the bases are the same, we can equate the exponents: \[ \frac{1}{2} = k \] 7. **Final Result**: Thus, the value of \( k \) is: \[ k = \frac{1}{2} \] ### Conclusion: The value of \( k \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let k[f(x)+f(y)]=f(x sqrt(1-y^(2))+y sqrt(1-x^(2))) then k=:

If (6)/(2sqrt(3)-sqrt(5))=(12sqrt(3)+6sqrt(5))/(k), then k=

If log (sqrt(2)+sqrt(3))=cosh^(-1)k then k=

If sqrt(2+sqrt(2+2cos4x))=K. cosx, then : K=….

int(dx)/(sqrt(3x^(3)+4x+7))=k log|(2x-3)+sqrt(9x^(2)+12x+21)|+c, then k=(i)(1)/(3)(ii)(1)/(sqrt(3))(iit)(2)/(sqrt(3)) (iv) (4)/(sqrt(3))

If point P(x,y) is such that it moves on a hyperbola |sqrt((x-3)^(2)+(y-4)^(2))-sqrt(x^(2)+y^(2))|=k^(2) then number of possible integral values of k is

If int_(0)^(a) sqrt((a-x)/(x)) dx = (k)/(2) ,then k = …..

int x sqrt((a^(2)-x^(2))/(a^(2)+x^(2)))dx=a^(2)k sin^(-1)((x^(2))/(a^(2)))+p sqrt(a^(4)-x^(4))+c, then k+p=

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)), prove that (dy)/(dx)=(x sqrt(1-y^(4)))/(y sqrt(1-x^(4)))

sqrt((9^((r + (I)/4)) sqrt(3.3^(-r)))/(3.sqrt(3^(-r)))) = k , then the value of k is