Home
Class 12
MATHS
(7^((-1/2))xx5^(2))^(2)+sqrt(25^(3))=...

`(7^((-1/2))xx5^(2))^(2)+sqrt(25^(3))=`

A

`5/7`

B

`7/5`

C

35

D

`- 5/7`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

((5^(-1)xx7^(2))/(5^(2)xx7^(-4)))^((7)/(2))xx((5^(-2)xx7^(3))/(5^(3)xx7^(-5)))^(-(5)/(2))

H.C.F.of 3240,3600 and a third number is 36 and their L.C.M.is 2^(4)xx3^(5)xx5^(2)xx7^(2) .The third number is (a) 2^(2)xx3^(5)xx7^(2)(b)2^(2)xx5^(3)xx7^(2)(c)2^(5)xx5^(2)xx7^(2)(b)2^(3)xx3^(5)xx7^(2)

Simplify: ((sqrt(2))/(5))^(8)-:((sqrt(2))/(5))^(13) (ii) ((5^(-1)x7^(2))/(5^(2)x7^(-7)))^((1)/(2))x((5^(-2)x7^(3))/(5^(3)x7^(-5)))^(-(5)/(2))

(2^((1)/(3))xx5^((2)/(3)))/(2^(-(2)/(3))xx5^(-(1)/(3)))

(5sqrt(2)xx7sqrt(7))/(3sqrt(27)xx sqrt(125))=

Find the 5th term of the progression 1,((sqrt(2)-1))/(2sqrt(3)),((3-2sqrt(2))/(12)),((5sqrt(2)-7)/(24sqrt(3)))

((3)^(-5)xx5^(-2)xx27^(2/3))/(6^2xx25^(1/2)xx49^(-1/2))

Simplify : (3^(-3)xx6^(2)xx sqrt(98))/(5^(2)xx((1)/(25))^((1)/(3))xx(15)^(-(4)/(3))xx3^((1)/(3)))