Home
Class 12
MATHS
(2d^(2)e^(-1))^(3)xx(d^(3)/e)^(-2)=...

`(2d^(2)e^(-1))^(3)xx(d^(3)/e)^(-2)=`

A

`8e^(-2)`

B

`8e^(-3)`

C

`8e^(-1)`

D

`8e^(-4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

A random variable X has poisson distribution with mean 2. Then P(x>1.5) is equal to (A) (2)/(e^(2))(B)0(C)1-(3)/(e^(2))(D)(3)/(e^(2))

The solution of the differential equation log((dy)/(dx))=4x-2y-2,y=1 when x=1, is (A)2e^(2y+2)=e^(4x)+e^(2)(B)2e^(2y-2)=e^(4x)+e^(2)(C)2e^(2y+2)=e^(4x)+e^(4)(D)3e^(2y+2)=e^(3x)+e^(4)(C)2e^(2y+2)=e^(4x)+e^(4)(D)

If a,b,c,d,e are + ve real numbers such that a+b+c+d+e=8 and a^(2)+b^(2)+c^(2)+d^(2)+e^(2)=16 ,then the range of 'e' is

The degree of the differential equation,e^(((d^(3)y)/(dx^(3)))^(2))+x(d^(2)y)/(dx^(2))+y=0 is 1(b)2(c)0(d) not defined

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

The normal at an end of a latus rectum of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 passes through an end of the minor axis if (A)e^(4)+e^(2)=1(B)e^(3)+e^(2)=1(C)e^(2)+e=1(D)e^(3)+e=1

If y=x+e^(x), then (d^(2)x)/(dy^(2)) is (a) e^(x)(b)-(e^(x))/((1+e^(x))^(3))(c)-(e^(x))/((1+e^(x))^(3))(d)(-1)/((1+e^(x))^(3))

Choose the correct answer int x^(2)e^(x^(3))dx equals (A) (1)/(3)e^(x^(3))+C(B)(1)/(3)e^(x^(2))+C(C)(1)/(2)e^(x^(3))+C(D)(1)/(2)e^(x^(2))+C