Home
Class 12
MATHS
If a=x+1/x, " then "x^(3)+x^(-3)=...

If `a=x+1/x, " then "x^(3)+x^(-3)=`

A

`a^(3)+3a`

B

`a^(3)-3a`

C

`a^(3)+3`

D

`a^(3)-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a = x + \frac{1}{x} \) and we need to find \( x^3 + \frac{1}{x^3} \), we can follow these steps: ### Step 1: Identify the relationship We know that: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right) \left( x^2 - x \cdot \frac{1}{x} + \frac{1}{x^2} \right) \] This can be simplified to: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right) \left( x^2 - 1 + \frac{1}{x^2} \right) \] ### Step 2: Substitute \( a \) Since \( a = x + \frac{1}{x} \), we can rewrite the expression as: \[ x^3 + \frac{1}{x^3} = a \left( x^2 - 1 + \frac{1}{x^2} \right) \] ### Step 3: Find \( x^2 + \frac{1}{x^2} \) To find \( x^2 + \frac{1}{x^2} \), we can use the identity: \[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} \] This implies: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 = a^2 - 2 \] ### Step 4: Substitute back into the equation Now we can substitute \( x^2 + \frac{1}{x^2} \) back into our equation: \[ x^3 + \frac{1}{x^3} = a \left( (a^2 - 2) - 1 \right) = a (a^2 - 3) \] ### Step 5: Final expression Thus, we have: \[ x^3 + \frac{1}{x^3} = a^3 - 3a \] ### Conclusion So, the final answer is: \[ x^3 + \frac{1}{x^3} = a^3 - 3a \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x+(1)/(x) =4 , " then " x^(3) + (1)/(x^(3)) is equal to :

If x+1/(x)=5 , then x^(3)+1/(x^(3)) is equal to

If x+ (1)/(x)=3 , then x^(3) + (1)/(x^(3)) =?

If X -1/x=8, then x^3 -1//x^3=?

If x+(1)/(x)=7 then x^(3)-(1)/(x^(3)) is

If x-1/x=7 , then x^3-(1)/(x^3) is equal to