Home
Class 12
MATHS
If (3sqrt4)^(2x+1/2)=1/32, then x =...

If `(3sqrt4)^(2x+1/2)=1/32`, then x =

A

-2

B

4

C

-6

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((3\sqrt{4})^{(2x + \frac{1}{2})} = \frac{1}{32}\), we will follow these steps: ### Step 1: Simplify the left side First, we can rewrite \(3\sqrt{4}\): \[ 3\sqrt{4} = 3 \cdot 2 = 6 \] So, the equation becomes: \[ 6^{(2x + \frac{1}{2})} = \frac{1}{32} \] ### Step 2: Rewrite \(\frac{1}{32}\) as a power of 2 We know that \(32 = 2^5\), therefore: \[ \frac{1}{32} = 2^{-5} \] Now, we need to express \(6\) in terms of base \(2\). However, we can also express \(32\) in terms of base \(6\) by recognizing that \(6\) is not a power of \(2\). Instead, we can directly solve for \(x\) by taking logarithms. ### Step 3: Take logarithm of both sides Taking logarithm base \(6\) on both sides: \[ 2x + \frac{1}{2} = \log_6\left(\frac{1}{32}\right) \] ### Step 4: Simplify the logarithm Using the change of base formula: \[ \log_6\left(\frac{1}{32}\right) = \log_6(2^{-5}) = -5 \cdot \log_6(2) \] Now we have: \[ 2x + \frac{1}{2} = -5 \cdot \log_6(2) \] ### Step 5: Solve for \(2x\) Rearranging gives: \[ 2x = -5 \cdot \log_6(2) - \frac{1}{2} \] ### Step 6: Divide by 2 to find \(x\) Now, divide everything by \(2\): \[ x = \frac{-5 \cdot \log_6(2) - \frac{1}{2}}{2} \] ### Step 7: Final simplification This gives: \[ x = -\frac{5}{2} \cdot \log_6(2) - \frac{1}{4} \] ### Conclusion The value of \(x\) can be calculated using the logarithm value, but it can also be approximated or left in this form depending on the context of the question.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If 4^(2x)=(1)/(32) , then x is

If x=(6-sqrt(32))/(2), then find the value of (x^(3)-(1)/(x^(3)))^(2)-6(x^(2)+(1)/(x^(2)))+(x+(1)/(x))

If (2+sqrt(3))^(x^(2)-1)+(2-sqrt(3))^(x^(2)-1)=4 then x= ?

If x=sqrt(3)+sqrt(2), then find x+(1)/(x),x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4))

If x=sqrt(3)+sqrt(2), then x+(1)/(x),x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4))

If xx=sqrt(3)+sqrt(2), then find xx+1/x,x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4))

If x+sqrt(x^(2)-1)+(1)/(x+sqrt(x^(2)+1))=20 then x^(2)+sqrt(x^(4)-1)+(1)/(x^(2)+sqrt(x^(4)-1))=

If y = tan ^ (- 1) ((3x) / (1-2x ^ (2))), - (1) / (sqrt (2))

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=