Home
Class 12
MATHS
Factorize following expressions (i) x^...

Factorize following expressions
(i) `x^(2)+3x-40" (ii)"x^2-3x-40" (iii)"x^(2)+5x-14`
(iv) `x^2-3x-4" (v)"x^2-3x-40" (vi)"3x^2-10x+8`
(vii) `12x^2-x-35" (viii)"3x^2-5x-2" (ix)"3x^2-7x+4`
(x) `7x^2-8x+1" (xi)"2x^2-17x+26" (xii)"3a^2-7a-6`
(xiii) `14a^2+a-3`

Text Solution

AI Generated Solution

The correct Answer is:
Let's factorize the given expressions step by step: ### (i) \(x^2 + 3x - 40\) 1. Identify \(A = 1\), \(B = 3\), and \(C = -40\). 2. Calculate \(A \cdot C = 1 \cdot (-40) = -40\). 3. Find two numbers that multiply to \(-40\) and add to \(3\). The numbers are \(8\) and \(-5\). 4. Rewrite \(3x\) as \(8x - 5x\): \[ x^2 + 8x - 5x - 40 \] 5. Factor by grouping: \[ x(x + 8) - 5(x + 8) \] 6. Combine the factors: \[ (x - 5)(x + 8) \] ### (ii) \(x^2 - 3x - 40\) 1. Identify \(A = 1\), \(B = -3\), and \(C = -40\). 2. Calculate \(A \cdot C = 1 \cdot (-40) = -40\). 3. Find two numbers that multiply to \(-40\) and add to \(-3\). The numbers are \(5\) and \(-8\). 4. Rewrite \(-3x\) as \(5x - 8x\): \[ x^2 + 5x - 8x - 40 \] 5. Factor by grouping: \[ x(x + 5) - 8(x + 5) \] 6. Combine the factors: \[ (x - 8)(x + 5) \] ### (iii) \(x^2 + 5x - 14\) 1. Identify \(A = 1\), \(B = 5\), and \(C = -14\). 2. Calculate \(A \cdot C = 1 \cdot (-14) = -14\). 3. Find two numbers that multiply to \(-14\) and add to \(5\). The numbers are \(7\) and \(-2\). 4. Rewrite \(5x\) as \(7x - 2x\): \[ x^2 + 7x - 2x - 14 \] 5. Factor by grouping: \[ x(x + 7) - 2(x + 7) \] 6. Combine the factors: \[ (x - 2)(x + 7) \] ### (iv) \(x^2 - 3x - 4\) 1. Identify \(A = 1\), \(B = -3\), and \(C = -4\). 2. Calculate \(A \cdot C = 1 \cdot (-4) = -4\). 3. Find two numbers that multiply to \(-4\) and add to \(-3\). The numbers are \(-4\) and \(1\). 4. Rewrite \(-3x\) as \(-4x + 1x\): \[ x^2 - 4x + 1x - 4 \] 5. Factor by grouping: \[ x(x - 4) + 1(x - 4) \] 6. Combine the factors: \[ (x + 1)(x - 4) \] ### (v) \(x^2 - 3x - 40\) This is the same as (ii) and has already been factored: \[ (x - 8)(x + 5) \] ### (vi) \(3x^2 - 10x + 8\) 1. Identify \(A = 3\), \(B = -10\), and \(C = 8\). 2. Calculate \(A \cdot C = 3 \cdot 8 = 24\). 3. Find two numbers that multiply to \(24\) and add to \(-10\). The numbers are \(-6\) and \(-4\). 4. Rewrite \(-10x\) as \(-6x - 4x\): \[ 3x^2 - 6x - 4x + 8 \] 5. Factor by grouping: \[ 3x(x - 2) - 4(x - 2) \] 6. Combine the factors: \[ (3x - 4)(x - 2) \] ### (vii) \(12x^2 - x - 35\) 1. Identify \(A = 12\), \(B = -1\), and \(C = -35\). 2. Calculate \(A \cdot C = 12 \cdot (-35) = -420\). 3. Find two numbers that multiply to \(-420\) and add to \(-1\). The numbers are \(20\) and \(-21\). 4. Rewrite \(-x\) as \(20x - 21x\): \[ 12x^2 + 20x - 21x - 35 \] 5. Factor by grouping: \[ 4x(3x + 5) - 7(3x + 5) \] 6. Combine the factors: \[ (4x - 7)(3x + 5) \] ### (viii) \(3x^2 - 5x - 2\) 1. Identify \(A = 3\), \(B = -5\), and \(C = -2\). 2. Calculate \(A \cdot C = 3 \cdot (-2) = -6\). 3. Find two numbers that multiply to \(-6\) and add to \(-5\). The numbers are \(-6\) and \(1\). 4. Rewrite \(-5x\) as \(-6x + x\): \[ 3x^2 - 6x + x - 2 \] 5. Factor by grouping: \[ 3x(x - 2) + 1(x - 2) \] 6. Combine the factors: \[ (3x + 1)(x - 2) \] ### (ix) \(3x^2 - 7x + 4\) 1. Identify \(A = 3\), \(B = -7\), and \(C = 4\). 2. Calculate \(A \cdot C = 3 \cdot 4 = 12\). 3. Find two numbers that multiply to \(12\) and add to \(-7\). The numbers are \(-3\) and \(-4\). 4. Rewrite \(-7x\) as \(-3x - 4x\): \[ 3x^2 - 3x - 4x + 4 \] 5. Factor by grouping: \[ 3x(x - 1) - 4(x - 1) \] 6. Combine the factors: \[ (3x - 4)(x - 1) \] ### (x) \(7x^2 - 8x + 1\) 1. Identify \(A = 7\), \(B = -8\), and \(C = 1\). 2. Calculate \(A \cdot C = 7 \cdot 1 = 7\). 3. Find two numbers that multiply to \(7\) and add to \(-8\). The numbers are \(-7\) and \(-1\). 4. Rewrite \(-8x\) as \(-7x - 1x\): \[ 7x^2 - 7x - 1x + 1 \] 5. Factor by grouping: \[ 7x(x - 1) - 1(x - 1) \] 6. Combine the factors: \[ (7x - 1)(x - 1) \] ### (xi) \(2x^2 - 17x + 26\) 1. Identify \(A = 2\), \(B = -17\), and \(C = 26\). 2. Calculate \(A \cdot C = 2 \cdot 26 = 52\). 3. Find two numbers that multiply to \(52\) and add to \(-17\). The numbers are \(-13\) and \(-4\). 4. Rewrite \(-17x\) as \(-13x - 4x\): \[ 2x^2 - 13x - 4x + 26 \] 5. Factor by grouping: \[ x(2x - 13) - 2(2x - 13) \] 6. Combine the factors: \[ (2x - 13)(x - 2) \] ### (xii) \(3a^2 - 7a - 6\) 1. Identify \(A = 3\), \(B = -7\), and \(C = -6\). 2. Calculate \(A \cdot C = 3 \cdot (-6) = -18\). 3. Find two numbers that multiply to \(-18\) and add to \(-7\). The numbers are \(-9\) and \(2\). 4. Rewrite \(-7a\) as \(-9a + 2a\): \[ 3a^2 - 9a + 2a - 6 \] 5. Factor by grouping: \[ 3a(a - 3) + 2(a - 3) \] 6. Combine the factors: \[ (3a + 2)(a - 3) \] ### (xiii) \(14a^2 + a - 3\) 1. Identify \(A = 14\), \(B = 1\), and \(C = -3\). 2. Calculate \(A \cdot C = 14 \cdot (-3) = -42\). 3. Find two numbers that multiply to \(-42\) and add to \(1\). The numbers are \(7\) and \(-6\). 4. Rewrite \(a\) as \(7a - 6a\): \[ 14a^2 + 7a - 6a - 3 \] 5. Factor by grouping: \[ 7a(2a + 1) - 3(2a + 1) \] 6. Combine the factors: \[ (2a + 1)(7a - 3) \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Factorize following expressions (i) x^(3)-6x^2+11x-6 " (ii)" 2x^3+9x^2+10x+3 (iii) 2x^3-9x^2+13x-6" (iv)" x^6-7x^2-6

Factorise: (i) 12 x^2-7x+1 (ii) 2x^2+7x+3 (iii) 6x^2+5x-6 (iv) 3x^2-x-4

Which of the following are polynomials ? (i) x^(2)-3x+1 " " (ii) x^(2)+5x+2 " "(iii) x-(1)/(y) " " (iv) x^(7)+8 " " (v) x^(3)+sqrt(x)-2 (vi) sqrt(2)x^(2)+x-1 " " (vii) (3x-1)(x+5) " " (viii) (x-(3)/(x))(x+2) " " (ix)2x^(2)-1 (x) x+(1)/(sqrt(x))+2

Factorize each of the following algebraic expressions: x^(2)+12x-45(2)40+3x-x^(2)a^(2)+3a-88(4)a^(2)-14a-51

Which of the following are polynomials : (i) 3x^(2)-7x+6 " " (ii) x^(2)-sqrt(3)x+4 " " (iii) 3sqrt(x)+5 " " (iv) 13 " " (v) a+(5)/(a)+6

Add 7x^(2) -8x + 5, 3x^(2) -8x +5 and -6x^(2) + 15x - 5

Find the degree of each of the following polynomials : (i) 3x^(4)-x^(2)+8 " " (ii) y^(2)-5y+7 " " (iii) 3x+4 " " (iv) 3 (v) x-2x^(2)+5x^(7) " " (vi) 2y^(2)-5y^(6)+1 " "(vii) x^(3)-1 " " (viii) 3x+5x^(5)+1

Determine the nature of roots of the following quadratic equations: (i) 2x^(2)+5x-4=0 (ii) 9x^(2)-6x+1=0 (iii) 3x^(2)+4x+2=0 (iv) x^(2)+2sqrt2x+1=0 (v) x^(2)+x+1=0 (vi) x^(2)+ax-4=0 (vii) 3x^(2)+7x+(1)/(2)=0 (viii) 3x^(2)-4sqrt3x+4=0 (ix) 2sqrt3x^(2)-5x+sqrt3=0 (x) (x-2a)(x-2b)=4ab

Which of the following are quadratic equations? (i) x^(2)8x+12=0 (ii) x+(1)/(x)=5 (iii) x+(5)/(x)=x^(2) (iv) x^(2)-5sqrtx+7=0 (v) x^(2)-5x-sqrtx+4=0 (vi) x^(2)-(1)/(x^(2))=4 (vii) 5x^(2)-7x=3x^(2)-7x+3 (viii) (1)/(4)x^(2)+(7)/(6)x-2=0