For an A.P., show that `t_(m) + t_(2n + m) = 2t_( m + n)`
Topper's Solved these Questions
SEQUENCE AND PROGRESSION
ALLEN|Exercise Do yourself 2|2 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Do yourself 3|5 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise (JA)|12 Videos
RACE
ALLEN|Exercise Race 21|10 Videos
TEST PAPER
ALLEN|Exercise CHEMISTRY SECTION-II|8 Videos
Similar Questions
Explore conceptually related problems
For an A.P.show that t_(m+n)+t_(m-n)=2t_(m)
In an A.P., prove that : T_(m+n) + T_(m-n) = 2*T_(m)
If the sequence > is A.P., show that a_(m+n)+a_(m-n)=2a_mdot
Find d for an A.P. if (i) t_(10) =20, t_(9) = 18 (ii) t_(n) = 7, t_(n-1) = 10
For an A.P. if t_(4)=20 and t_(7)=32 , find a,d and t_(n) .
If S_n denotes the sum of first n terms of an A.P. such that (S_m)/(S_n)=(m^2)/(n^2), t h e n(a_m)/(a_n)= a.(2m+1)/(2n+1) b. (2m-1)/(2n-1) c. (m-1)/(n-1) d. (m+1)/(n+1)
Let {t_(n)} is an A.P If t_(1) = 20 , t_(p) = q , t_(q) = p , find the value of m such that sum of the first m terms of the A.P is zero .
In an A.P. if a=2, t_(n)=34 ,S_(n) =90 , then n=
For a given A.P. A=3.5 , d=0, then t_(n) = "_ _ _ _ _ _ _ _"