Home
Class 12
MATHS
Let a1,a2,a3,...... be an A.P. such that...

Let `a_1,a_2,a_3,......` be an A.P. such that `[a_1+a_2+......+a_p]/[a_1+a_2+a_3+......+a_q]=p^3/q^3` ; `p!=q`.Then `a_6/a_[21]` is equal to:

A

`(121)/(1861)`

B

`(11)/(41)`

C

`(121)/(1681)`

D

`(41)/(11)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-4|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-5|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-2|21 Videos
  • RACE

    ALLEN|Exercise Race 21|10 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|8 Videos

Similar Questions

Explore conceptually related problems

Let a_1,a_2,a_3………. be term of an A.P. if (a_1+a_2+….+a_p)/(a_1+a_2+………+a_q)=p^2/q^2 p!=q then a_6/ a_21 euqals (A) 41/11 (B) 11/41 (C) 13/44 (D) 15/41

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these

Knowledge Check

  • If a_1, a_2, a_3 ,........ are in A.P. such that a_1 + a_5 + a_10 + a_15 + a_20 + a_24 = 225 , then a_1 + a_2+ a_3 + ......+ a_23 +a_24 is equal to

    A
    909
    B
    75
    C
    750
    D
    900
  • If a_1, a_2, a_3, ..... is an A.P. such that a_1+a_5+a_(10)+a_(15)+a_(20)+a_(24)=225 , then a_1+a_2+a_3+....+a_(23)+a_(24) is equal to :

    A
    999
    B
    900
    C
    1225
    D
    none
  • Let a_1,a_2,a_3…… ,a_n be in G.P such that 3a_1+7a_2 +3a_3-4a_5=0 Then common ratio of G.P can be

    A
    2
    B
    `3/2`
    C
    `5/2`
    D
    `-1/2`
  • Similar Questions

    Explore conceptually related problems

    Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these

    Let a_1,a_2,a_3 ......, a_n are in A.P. such that a_n = 100 , a_40-a_39=3/5 then 15^(th) term of A.P. from end is

    "If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

    Let a_1,a_2 ,a_3 …..be in A.P. and a_p, a_q , a_r be in G.P. Then a_q : a_p is equal to :

    Let a_1,a_2," ..."a_10 be a G.P. If a_3/a_1=25," then "a_9/a_5 equals