Home
Class 12
PHYSICS
If vec(A)=2hati+hatj+hatk " and " vecB=1...

If `vec(A)=2hati+hatj+hatk " and " vecB=10hati+5hatj+5hatk`, if the magnitude of component of `(vec(B)-vec(A))` along `vec(A)` is `4sqrt(x)`. Then x will be .

Text Solution

Verified by Experts

The correct Answer is:
6

`r=vec(B)-vec(A)=4(2hati+hatj+hatk)`
`r cos theta =(vecr.vec(A))/(|A|)=(4(4+1+1))/(sqrt(6))=4sqrt(6)`
`x=6`
Promotional Banner

Topper's Solved these Questions

  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (S-1)|22 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (S-2)|7 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos
  • TEST PAPERS

    ALLEN|Exercise MATHS|18 Videos
  • WAVE OPTICS

    ALLEN|Exercise Exercise 2 (Previous Year Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If vec A=hati +7hatj +hatk and vec B =2 hati+3hatj +4hatk then the component of vec A along vec B is

If vec(A) = 3 hati +2hatj and vec(B) = hati - 2hatj +3hatk , find the magnitudes of vec(A) +vec(B) and vec(A) - vec(B) .

If vec(A) = 2hati +3 hatj +hatk and vec(B) = 3hati + 2hatj + 4hatk , then find the value of (vec(A) +vec(B)) xx (vec(A) - vec(B))

The vector vec(A)=6hati+9hatj-3hatkand vecB=2hati+3hatj-hatk are

If vec(A) = hati + 3hatj + 2hatk and vec(B) = 3hati + hatj + 2hatk , then find the vector product vec(A) xx vec(B) .

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .

Given : vec A =2hati +3hatj and vec B = hati +hatj . What is the component of vector vec A along the vector vec B ?

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk and vec(PQ) and the direction cosines of vec(PQ) .

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?