Home
Class 12
PHYSICS
Two vectors vecA and vecB are defined as...

Two vectors `vecA` and `vecB` are defined as `vecA=ahati` and `vecB=a( cos omegathati+sin omegat hatj)`, were a is a constant and `omega=pi//6 rads^(-1)`. If `|vecA+vecB|=sqrt(3)|vecA-vecB|` at time `t=tau` for the first time, the value of `tau`, in seconds , is _________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two vectors given and apply the condition provided in the question. Let's break down the solution step by step. ### Step 1: Define the Vectors We have two vectors defined as: - \(\vec{A} = a \hat{i}\) - \(\vec{B} = a (\cos(\omega t) \hat{i} + \sin(\omega t) \hat{j})\) Here, \(a\) is a constant and \(\omega = \frac{\pi}{6} \, \text{radians/second}\). ### Step 2: Calculate the Magnitudes The magnitude of \(\vec{A} + \vec{B}\) is given by: \[ |\vec{A} + \vec{B}| = |a \hat{i} + a (\cos(\omega t) \hat{i} + \sin(\omega t) \hat{j})| \] This simplifies to: \[ |\vec{A} + \vec{B}| = |a(1 + \cos(\omega t)) \hat{i} + a \sin(\omega t) \hat{j}| \] Using the Pythagorean theorem, we can find the magnitude: \[ |\vec{A} + \vec{B}| = a \sqrt{(1 + \cos(\omega t))^2 + \sin^2(\omega t)} \] ### Step 3: Calculate the Magnitude of \(\vec{A} - \vec{B}\) Next, we calculate the magnitude of \(\vec{A} - \vec{B}\): \[ |\vec{A} - \vec{B}| = |a \hat{i} - a (\cos(\omega t) \hat{i} + \sin(\omega t) \hat{j})| \] This simplifies to: \[ |\vec{A} - \vec{B}| = |a(1 - \cos(\omega t)) \hat{i} - a \sin(\omega t) \hat{j}| \] Using the Pythagorean theorem again: \[ |\vec{A} - \vec{B}| = a \sqrt{(1 - \cos(\omega t))^2 + \sin^2(\omega t)} \] ### Step 4: Set Up the Given Condition According to the problem, we have: \[ |\vec{A} + \vec{B}| = \sqrt{3} |\vec{A} - \vec{B}| \] Substituting the magnitudes we calculated: \[ a \sqrt{(1 + \cos(\omega t))^2 + \sin^2(\omega t)} = \sqrt{3} a \sqrt{(1 - \cos(\omega t))^2 + \sin^2(\omega t)} \] Dividing both sides by \(a\) (assuming \(a \neq 0\)): \[ \sqrt{(1 + \cos(\omega t))^2 + \sin^2(\omega t)} = \sqrt{3} \sqrt{(1 - \cos(\omega t))^2 + \sin^2(\omega t)} \] ### Step 5: Square Both Sides Squaring both sides gives: \[ (1 + \cos(\omega t))^2 + \sin^2(\omega t) = 3 \left((1 - \cos(\omega t))^2 + \sin^2(\omega t)\right) \] ### Step 6: Expand and Simplify Expanding both sides: \[ 1 + 2\cos(\omega t) + \cos^2(\omega t) + \sin^2(\omega t) = 3(1 - 2\cos(\omega t) + \cos^2(\omega t) + \sin^2(\omega t)) \] Using \(\sin^2(\omega t) + \cos^2(\omega t) = 1\): \[ 1 + 2\cos(\omega t) + 1 = 3(1 - 2\cos(\omega t) + 1) \] This simplifies to: \[ 2 + 2\cos(\omega t) = 3(2 - 2\cos(\omega t)) \] \[ 2 + 2\cos(\omega t) = 6 - 6\cos(\omega t) \] Combining like terms: \[ 8\cos(\omega t) = 4 \implies \cos(\omega t) = \frac{1}{2} \] ### Step 7: Solve for \(\omega t\) The cosine function equals \(\frac{1}{2}\) at: \[ \omega t = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad \omega t = -\frac{\pi}{3} + 2n\pi \quad (n \in \mathbb{Z}) \] Using \(\omega = \frac{\pi}{6}\): \[ \frac{\pi}{6} t = \frac{\pi}{3} \implies t = 2 \, \text{seconds} \] ### Final Answer Thus, the value of \(\tau\) at which the condition is satisfied for the first time is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-M)|1 Videos
  • TEST PAPERS

    ALLEN|Exercise MATHS|18 Videos
  • WAVE OPTICS

    ALLEN|Exercise Exercise 2 (Previous Year Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then

If |vecA xx vecB| = sqrt(3) vecA .vecB then the value of |vecA xx vecB| is :

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

For vectors vecA and vecB , (vecA + vecB). (vecA xx vecB) will be :

If vecA.vecB = |vecA xx vecB| , find angle between vecA and vecB .

the value of (vecA+vecB)xx(vecA-vecB) is

vecA and vecB and vectors expressed as vecA = 2hati + hatj and vecB = hati - hatj Unit vector perpendicular to vecA and vecB is:

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

If vecA||vecB then vecA xx vecB =……….