Home
Class 8
MATHS
(3q + 7 p^(2) - 2r^(3) + 4) - (4 p^(2) -...

`(3q + 7 p^(2) - 2r^(3) + 4) - (4 p^(2) - 2q + 7r^(3) - 3) = ?`

A

`(p^(2) + 2q + 5r^(3) + 1)`

B

`(11p^(2) + q + 5r^(3) + 1)`

C

`(-3p^(2) - 5q + 9r^(3) - 7)`

D

`(3 p^(2) + 5q - 9r^(3) + 7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3q + 7p^2 - 2r^3 + 4) - (4p^2 - 2q + 7r^3 - 3)\), we will follow these steps: ### Step 1: Distribute the negative sign The expression can be rewritten by distributing the negative sign across the second set of parentheses. This means changing the signs of each term inside the parentheses: \[ (3q + 7p^2 - 2r^3 + 4) - (4p^2 - 2q + 7r^3 - 3) = 3q + 7p^2 - 2r^3 + 4 - 4p^2 + 2q - 7r^3 + 3 \] ### Step 2: Combine like terms Now, we will combine the like terms from the expression: - For \(q\) terms: \(3q + 2q = 5q\) - For \(p^2\) terms: \(7p^2 - 4p^2 = 3p^2\) - For \(r^3\) terms: \(-2r^3 - 7r^3 = -9r^3\) - For constant terms: \(4 + 3 = 7\) Putting it all together, we have: \[ 5q + 3p^2 - 9r^3 + 7 \] ### Final Answer Thus, the final simplified expression is: \[ 5q + 3p^2 - 9r^3 + 7 \] ---
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6D|15 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Subtract : 4p^(2) + 5q^(2) - 6r^(2) + 7 from 3p^(2) - 4q^(2) - 5r^(2) - 6

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

Multiply the - 7p q ^(2) r ^(3), 12 p ^(2) q ^(2) r

If P = 3x^(3) -5x + 9, Q = 4x^(3) + 5x^(2) -11 and R = 5x^(3) + 4x^(2) -3x +7 , then P -2 Q + R is

If 2p + 3q = 12 and 4p^(2) + 4pq - 3q^(2) = 126 , then what is the value of p + 2q ?

Factorize : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

Factorise : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)