Home
Class 8
MATHS
(2x + 5)(2x - 5) = ?...

`(2x + 5)(2x - 5) = ?`

A

`(4x^(2) + 25)`

B

`(4x^(2) - 25)`

C

`(4x^(2) - 10x + 25)`

D

`(4 x^(2) + 10x - 25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2x + 5)(2x - 5)\), we can use the identity for the difference of squares, which states that: \[ (a + b)(a - b) = a^2 - b^2 \] ### Step-by-Step Solution: **Step 1: Identify \(a\) and \(b\)** In our expression, we can identify: - \(a = 2x\) - \(b = 5\) **Step 2: Apply the difference of squares identity** Using the identity, we can rewrite the expression as: \[ (2x + 5)(2x - 5) = (2x)^2 - (5)^2 \] **Step 3: Calculate \((2x)^2\)** Now, we calculate \((2x)^2\): \[ (2x)^2 = 2^2 \cdot x^2 = 4x^2 \] **Step 4: Calculate \((5)^2\)** Next, we calculate \((5)^2\): \[ (5)^2 = 25 \] **Step 5: Substitute back into the equation** Now substitute these values back into the expression: \[ (2x + 5)(2x - 5) = 4x^2 - 25 \] ### Final Answer: Thus, the simplified expression is: \[ 4x^2 - 25 \] ---
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6D|15 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Expand the using suitable identitie. (2x + 5y) ( 2x - 5y)

5 (2x + 5) -2 (x + 1) = 0

((2x) / (x-5)) ^ (2) +5 ((2x) / (x-5))-24 = 0

y = (x ^ (2) -2x + 5) / (x ^ (2) + 2x + 5)

What should be added to 1/((x-2) (x-4)) to get (2x-5)/((x^(2) - 5x + 6)(x-4)) ?

Factorise: (x ^(2) - 5x) ( x ^(2) - 5x - 20) + 84

Find the domain of f(x) = (x^(2) + 3x + 5)/(x^(2) - 5x+ 4)