Home
Class 8
MATHS
(a + 1)(a - 1)(a^(2) + 1) = ?...

`(a + 1)(a - 1)(a^(2) + 1) = ?`

A

`(a^(4) - 2a^(2) - 1)`

B

`(a^(4) - a^(2) - 1)`

C

`(a^(4) - 1)`

D

`(a^(4) + 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((a + 1)(a - 1)(a^{2} + 1)\), we can follow these steps: ### Step 1: Apply the Difference of Squares Formula We recognize that \((a + 1)(a - 1)\) can be simplified using the difference of squares formula: \[ (a + b)(a - b) = a^2 - b^2 \] In this case, \(b = 1\). Therefore, we can write: \[ (a + 1)(a - 1) = a^2 - 1^2 = a^2 - 1 \] ### Step 2: Substitute Back into the Expression Now we substitute this result back into the original expression: \[ (a + 1)(a - 1)(a^{2} + 1) = (a^2 - 1)(a^2 + 1) \] ### Step 3: Apply the Difference of Squares Again Next, we can apply the difference of squares formula again to \((a^2 - 1)(a^2 + 1)\): \[ (a^2 + b)(a^2 - b) = a^4 - b^2 \] Here, \(b = 1\). Thus, we have: \[ (a^2 - 1)(a^2 + 1) = a^4 - 1^2 = a^4 - 1 \] ### Final Result Putting it all together, we find: \[ (a + 1)(a - 1)(a^{2} + 1) = a^4 - 1 \] ### Summary The final answer is: \[ \boxed{a^4 - 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6D|15 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1+ (1) / (2) + (1) / (2 ^ (2)) + (1) / (2 ^ (3)) + ...... (1) / (2 ^ (n))) / (1+ (1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (3)) ...... (1) / (3 ^ (n)))

tan [(1) / (2) sin ^ (- 1) ((2a) / (1 + a ^ (2))) + (1) / (2) cos ^ (- 1) ((1-a ^ (2)) / (1 + a ^ (2)))] =

Simplify : 8 (1)/(2)-[3 (1)/(4)-:{1(1)/(4) - (1)/(2) ( 1 (1)/(2)-(1)/(3)-(1)/(6))}]

The product (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(11^(2)))(1-(1)/(12^(2))) is equal to

1/(3^2 -1)+1/(5^2 -1)+1/(7^2 -1)+……+1/((201)^2 -1) is equal to