Home
Class 8
MATHS
((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) ...

`((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) = ?`

A

`((1)/(x^(2)) - (1)/(y^(2)))`

B

`((1)/(x^(2)) + (1)/(y^(2)))`

C

`((1)/(x^(2)) + (1)/(y^(2)) - (1)/(xy))`

D

`((1)/(x^(2)) - (1)/(y^(2)) + (1)/(xy))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1}{x} + \frac{1}{y}\right) \left(\frac{1}{x} - \frac{1}{y}\right)\), we can use the identity for the difference of squares, which states that: \[ (a + b)(a - b) = a^2 - b^2 \] ### Step-by-step Solution: 1. **Identify \(a\) and \(b\)**: - Here, let \(a = \frac{1}{x}\) and \(b = \frac{1}{y}\). 2. **Apply the identity**: - According to the difference of squares identity, we have: \[ \left(\frac{1}{x} + \frac{1}{y}\right) \left(\frac{1}{x} - \frac{1}{y}\right) = \left(\frac{1}{x}\right)^2 - \left(\frac{1}{y}\right)^2 \] 3. **Calculate \(\left(\frac{1}{x}\right)^2\) and \(\left(\frac{1}{y}\right)^2\)**: - \(\left(\frac{1}{x}\right)^2 = \frac{1}{x^2}\) - \(\left(\frac{1}{y}\right)^2 = \frac{1}{y^2}\) 4. **Substitute back into the equation**: - Now substituting these values back, we get: \[ \frac{1}{x^2} - \frac{1}{y^2} \] 5. **Final Result**: - Therefore, the final answer is: \[ \frac{1}{x^2} - \frac{1}{y^2} \]
Promotional Banner

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6D|15 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Solve for x and y : (1)/(2x) - (1)/(y) = - 1, (1)/(x) + (1)/(2y)= 8 ( x ne 0 , y ne 0 )

solution of the equations (1)/(x)+(1)/(y)=4 and (1)/(x)-(1)/(y)=0

The equation ((1)/(x))+((1)/(y))=15, and ((1)/(x))((1)/(y))=5 are such that ax=1 and by =1. The values of a and b respectively are _(-)

(1) / (2x) - (1) / (y) = - 1, (1) / (x) + (1) / (2y) = 8

Given x+ (1)/(y)=1 and y + (1)/(z)=1 find (x+y+z) + ((1)/(x) + (1)/(y) + (1)/(z))= ?

(1) / (x) + (1) / (y) = (1) / (24), (2) / (x) + (1) / (y) = (1) / (8)

Solve the following system of equations: (1)/(2x)-(1)/(y)=-1(1)/(x)+(1)/(2y)=9, where x!=0,y!=0

If (1)/(x + y) = (1)/(2) and (1)/(x -y) = (1)/(3) , then x = ____ and y = _____

For all positive numbers x,y,z the product ((1)/(x+y+z))((1)/(x)+(1)/(y)+(1)/(z))((1)/(xy+yz+zx))((1)/(xy)+(1)/(yz)+(1)/(zx)) equals