Home
Class 12
MATHS
Let S = sum(i=1)^(n) a(j) and sum(l=1)^(...

Let `S = sum_(i=1)^(n) a_(j)` and `sum_(l=1)^(n) s/(s-a_(j)) gt (n^(2))/(n-1)`assumbing not all `a_(i) ` s are equal

Text Solution

Verified by Experts

The correct Answer is:
` rArr sum_(i=1)^(n) s/(s-a_(1)) gt (n^(2))/((n-1))`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION & SERIES

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|25 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise EXERCISE 1|5 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • PROBABILITY

    FIITJEE|Exercise Exercise 7|2 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

S=sum_(i=1)^(n)sum_(j=1)^(i)sum_(k=1)^(j)1

If a_(n)=(n)/((n+1)!) then find sum_(n=1)^(50)a_(n)

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( 1+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is

If =1-a_(i),na=sum_(i=1)^(n)a_(i),nb=sum_(i=1)^(n)b_(i), then sum_(i=1)^(n)a_(i),b_(i)+sum_(i=1)^(n)(a_(i)-a)^(2)ab b.-nab c.(n+1)ab d.nab

If S_(n),=sum_(k=1)^(n)a_(k) and lim_(n rarr oo)a_(n)=a, then lim_(n rarr oo),(S_(n+1)-S_(n))/(sqrt(sum_(k=1)^(n)k)) is equal to

If a_(n)=n(n!), then sum_(r=1)^(100)a_(r) is equal to