Home
Class 12
PHYSICS
If A=B=C=1 and X= bar(ABC)+Bbar(CA)+Bbar...

If `A=B=C=1 and X= bar(ABC)+Bbar(CA)+Bbar(CA)+Cbar(AB)`, then X=

A

0

B

1

C

100

D

110

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( X = \overline{ABC} + \overline{B}(CA) + \overline{B}(CA) + \overline{C}(AB) \) given \( A = B = C = 1 \), we will follow these steps: ### Step 1: Substitute the values of A, B, and C Since \( A = 1 \), \( B = 1 \), and \( C = 1 \), we can substitute these values into the expression for \( X \). \[ X = \overline{(1)(1)(1)} + \overline{(1)}(1 \cdot 1) + \overline{(1)}(1 \cdot 1) + \overline{(1)}(1 \cdot 1) \] ### Step 2: Calculate the complements Now we calculate the complements: - \( \overline{(1)(1)(1)} = \overline{1} = 0 \) - \( \overline{(1)} = 0 \) Substituting these values into the expression gives: \[ X = 0 + 0(1) + 0(1) + 0(1) \] ### Step 3: Simplify the expression Now, we simplify the expression: \[ X = 0 + 0 + 0 + 0 = 0 \] ### Final Answer Thus, the value of \( X \) is \( 0 \). ---

To solve the expression \( X = \overline{ABC} + \overline{B}(CA) + \overline{B}(CA) + \overline{C}(AB) \) given \( A = B = C = 1 \), we will follow these steps: ### Step 1: Substitute the values of A, B, and C Since \( A = 1 \), \( B = 1 \), and \( C = 1 \), we can substitute these values into the expression for \( X \). \[ X = \overline{(1)(1)(1)} + \overline{(1)}(1 \cdot 1) + \overline{(1)}(1 \cdot 1) + \overline{(1)}(1 \cdot 1) \] ...
Promotional Banner

Topper's Solved these Questions

  • SEMICONDUCTOR ELECTRONICS

    NARAYNA|Exercise EXERCISE -2 (H.W) (INTRINSIC, EXTRINSIC SEMICONDUCTORS)|6 Videos
  • SEMICONDUCTOR ELECTRONICS

    NARAYNA|Exercise EXERCISE -2 (H.W) (JUNCTION DIODES)|5 Videos
  • SEMICONDUCTOR ELECTRONICS

    NARAYNA|Exercise EXERCISE -2 (C.W) (TRANSISTORS)|11 Videos
  • SEMI CONDUCTOR DEVICES

    NARAYNA|Exercise Level-II (H.W)|36 Videos
  • WAVE OPTICS

    NARAYNA|Exercise Exercise - 4 Polarisation|9 Videos

Similar Questions

Explore conceptually related problems

ABC is an equilateral triangle of side ‘a'. Then bar(AB).bar(BC) +bar(BC).bar(CA)+ bar(CA).bar(AB) =

Let X=A bar(BC)+B bar(CA)+C bar(AB) .Evalute X for (a) A=1,B=0,C=1 (b) A=B=C=1 A=B=C=0

If P(B)=(3)/(4),P(A nn B nnbar(C))=(1)/(3) and P(bar(A)nn Bbar(C))=(1)/(3) then P(B nn C)=

In DeltaABC, |bar(CB)| = a, |bar(CA)| = b and |bar(AB)| =c. CD is the median through the vertex C. Then bar(CA).bar(CD)=

If G is the centroid of Delta ABC, then bar(CA) + bar(CB) =

The points Abar((a)),Bbar((b)),Cbar((c)) will be collinear if

Let a=BC,b=CA,C=AB be the sides of the triangle ABC.If G is the centroid of Delta ABC such that GB and GC and bar(GC) are inclined at an obtuse angle,then

In /_\ABC , right angled at B, AB=3 , BC=4 and CA=5 . Then value of tan^2C+1 is:

If a+b+c=7 and a^(3)+b^(3)+c^(3)-3abc=175 , then what is the value of (ab+bc+ca) ?