Home
Class 11
PHYSICS
The equation of motion of particle is gi...

The equation of motion of particle is given by `(dp)/(dt) +m omega^(2) y =0` where `P` is momentum and `y` is its position. Then the particle

A

moves along a circle

B

moves along a parabola

C

executes simple harmonic motion

D

falls freely under gravity

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • OSCILLATIONS

    NARAYNA|Exercise EXERCISE - I (C.W)|63 Videos
  • OSCILLATIONS

    NARAYNA|Exercise EXERCISE - I (H.W)|66 Videos
  • OSCILLATIONS

    NARAYNA|Exercise EVALUATE YOURSELF - 4|8 Videos
  • NEWTONS LAWS OF MOTION

    NARAYNA|Exercise PASSAGE TYPE QUESTION|6 Videos
  • PHYSICAL WORLD

    NARAYNA|Exercise C.U.Q|10 Videos

Similar Questions

Explore conceptually related problems

The equation of motion of a particle of mass 1g is (d^(2)x)/(dt^(2)) + pi^(2)x = 0 , where x is displacement (in m) from mean position. The frequency of oscillation is (in Hz)

Equation motion of a particle is given as x = A cos(omega t)^(2) . Motion of the particle is

The equation of SHM of a particle is given as 2(d^(2)x)/(dt^(2))+32x=0 where x is the displacement from the mean position. The period of its oscillation ( in seconds) is -

A particle moves in the xy plane with a constant acceleration omega directed along the negative y-axis. The equation of motion of particle has the form y = cx -dx^(2) , where c and d are positive constants. Find the velocity of the particle at the origin of coordinates.

A particle moves in the plane xy with constant acceleration 'a' directed along the negative y-axis. The equation of motion of the particle has the form y= px - qx^2 where p and q are positive constants. Find the velocity of the particle at the origin of co-ordinates.

The equation of SHM of a particle is (d^2y)/(dt^2)+ky=0 , where k is a positive constant. The time period of motion is

The position of a particle moving along the y-axis is given as y=3t^(2)-t^(3) where y is in , metres and t is in sec.The time when the particle attains maximum positive y position will be

Differential equation for a particle performing linear SHM is given by (d^(2)x)/(dt^(2))+3xx=0 , where x is the displacement of the particle. The frequency of oscillatory motion is

NARAYNA-OSCILLATIONS-C. U . Q
  1. A particle moves on the X-axis according to the equation x = x(0) sin^...

    Text Solution

    |

  2. If a particle is executing SHM, with an amplitude A, the distance move...

    Text Solution

    |

  3. The equation of motion of particle is given by (dp)/(dt) +m omega^(2) ...

    Text Solution

    |

  4. Position of a particle varies as y = cos^(2) omega t - sin^(2) omega t...

    Text Solution

    |

  5. The motion of a particle in SHM of

    Text Solution

    |

  6. The displacement (from intial position) of a particle executing SHM wi...

    Text Solution

    |

  7. A particle moves on y-axis according to the equation y = A +B sin omeg...

    Text Solution

    |

  8. A system executing SHM must possesses

    Text Solution

    |

  9. The angular velocities of three bodies in SHM are omega(1), omega(2), ...

    Text Solution

    |

  10. For a particle in SHM the amplitude and maximum velocity are A and V r...

    Text Solution

    |

  11. The amplitude of a particle performing SHM is 'a'. The displacement at...

    Text Solution

    |

  12. A SHM has amplitude A and time period T. The maximum velocity will be

    Text Solution

    |

  13. A particle performs harmonic oscillations along a straight line with a...

    Text Solution

    |

  14. A particle perform SHM with period T and amplitude A. the mean velocit...

    Text Solution

    |

  15. A particle executing S.H.M. completes a distance (taking friction as n...

    Text Solution

    |

  16. The maximum acceleration of a body moving is SHM is a(0) and maximum v...

    Text Solution

    |

  17. A particle executing SHM. The phase difference between acceleration an...

    Text Solution

    |

  18. The phase of a particle in S.H.M. is pi//2, then :

    Text Solution

    |

  19. v36.3

    Text Solution

    |

  20. A body executing SHM has a total energy E. When its kinetic energy is ...

    Text Solution

    |