Home
Class 11
PHYSICS
A simple harmonic oscillation has an amp...

A simple harmonic oscillation has an amplitude `A` and time period `T`. The time required to travel from `x = A` to ` x= (A)/(2)` is

A

T/6

B

T/4

C

T/3

D

T/2

Text Solution

Verified by Experts

The correct Answer is:
A

Displacement from extreme `(a)/(2) = a cos ((2pi)/(T)xxt)`,
`(2pi)/(T) xx t = (pi)/(3) rArr t = (T)/(6)`
Promotional Banner

Topper's Solved these Questions

  • OSCILLATIONS

    NARAYNA|Exercise EXERCISE - I (H.W)|66 Videos
  • OSCILLATIONS

    NARAYNA|Exercise EXERCISE - II (C.W)|27 Videos
  • OSCILLATIONS

    NARAYNA|Exercise C. U . Q|75 Videos
  • NEWTONS LAWS OF MOTION

    NARAYNA|Exercise PASSAGE TYPE QUESTION|6 Videos
  • PHYSICAL WORLD

    NARAYNA|Exercise C.U.Q|10 Videos

Similar Questions

Explore conceptually related problems

A simple harmonic motion has an amplitude A and time period T. What is the time taken to travel from x=A to x=A//2 ?

A simple harmonic motino has amplitude A and time period T. The maxmum velocity will be

A simple pendulum performs simple harmonic motion about x=0 with an amplitude a ans time period T. The speed of the pendulum at x = (a)/(2) will be

A simple harmonic oscillator has an amplitude A and time period 6 pi second. Assuming the oscillation starts from its mean position, Find the time required by it to travel from x = 0 to x = frac{sqrt 3}{2}A

A particle is executing simple harmonic motion with an amplitude A and time period T. The displacement of the particles after 2T period from its initial position is

A particle executes a linear simple harmonic motion of amplitude 20 cm and time period 4 s. The minimum time period required for the particle to move between two points located at 10 cm on either side of equilibrium position is t seconds, then compute 3t + 2 .

A simple pendulum simple harmonic motion about x = 0 with an amplitude a and time period T speed of the pendulum at s = a//2 will be

NARAYNA-OSCILLATIONS-EXERCISE - I (C.W)
  1. The time period of a simple harmonic motion is 8 s At t=0. it is at th...

    Text Solution

    |

  2. A simple harmonic motion is represented by F(t)=10sin(20t+0.5). The am...

    Text Solution

    |

  3. A simple harmonic oscillation has an amplitude A and time period T. Th...

    Text Solution

    |

  4. The motion of a particle is given x = A sin omega t + B cos omega t Th...

    Text Solution

    |

  5. The displacement of a particle along the x-axis is given by x = a sin^...

    Text Solution

    |

  6. Out of the following functions representing motion of a particle which...

    Text Solution

    |

  7. The equation of S.H.M. isy=a sin (2 pint + a), then its phase at time...

    Text Solution

    |

  8. A particle starts from rest at the extreme position and makes SHM with...

    Text Solution

    |

  9. A particle executing simple harmonic motion along y -axis has its moti...

    Text Solution

    |

  10. The equation describing the motion of a simple harmonic oscillator alo...

    Text Solution

    |

  11. A particle in SHM has a period of 4s .It takes time t(1) to start from...

    Text Solution

    |

  12. The equation of the displacement of two particles making SHM are repre...

    Text Solution

    |

  13. Which of the following equation does not represent a simple harmonic m...

    Text Solution

    |

  14. The time period of oscillation of a particle that executes SHM is 1.2s...

    Text Solution

    |

  15. For a body in SHM the velocity is given by the relation V = sqrt(144-1...

    Text Solution

    |

  16. The maximum velocity a particle, executing simple harmonic motion with...

    Text Solution

    |

  17. A particle executing SHM has amplitude of 1m and time period pi sec. V...

    Text Solution

    |

  18. The amplitude and time period of a aprticle of mass 0.1kg executing si...

    Text Solution

    |

  19. A simple harmonic oscillator is of mass 0.100 kg. It is oscillating wi...

    Text Solution

    |

  20. A body executing SHM has a maximum velocity of 1ms^(-1) and a maximum ...

    Text Solution

    |