Home
Class 12
MATHS
Let veca=hati+hatj+hatk,vecb=hati+4hatj-...

Let `veca=hati+hatj+hatk,vecb=hati+4hatj-hatk and vec c =hati+hatj+2hatk`. If `vecS` be a unit vector, then the magnitude of the vector `(veca.vecS)(vecbxxvecc)+(vecb.vecS)(veccxxveca)+(vecc.vecS)(vecaxxvecb)` is equal to

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector given by the expression: \[ (\vec{a} \cdot \vec{S})(\vec{b} \times \vec{c}) + (\vec{b} \cdot \vec{S})(\vec{c} \times \vec{a}) + (\vec{c} \cdot \vec{S})(\vec{a} \times \vec{b}) \] where \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\), \(\vec{b} = \hat{i} + 4\hat{j} - \hat{k}\), and \(\vec{c} = \hat{i} + \hat{j} + 2\hat{k}\). ### Step 1: Calculate the Scalar Triple Product The scalar triple product \(\vec{a} \cdot (\vec{b} \times \vec{c})\) gives the volume of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). We can compute this using the determinant of a matrix formed by the components of the vectors. \[ \text{Determinant} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 4 & -1 \\ 1 & 1 & 2 \end{vmatrix} \] Calculating the determinant: \[ = 1 \cdot \begin{vmatrix} 4 & -1 \\ 1 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 4 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 4 & -1 \\ 1 & 2 \end{vmatrix} = (4 \cdot 2) - (-1 \cdot 1) = 8 + 1 = 9\) 2. \(\begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = (1 \cdot 2) - (-1 \cdot 1) = 2 + 1 = 3\) 3. \(\begin{vmatrix} 1 & 4 \\ 1 & 1 \end{vmatrix} = (1 \cdot 1) - (4 \cdot 1) = 1 - 4 = -3\) Putting it all together: \[ = 1 \cdot 9 - 1 \cdot 3 + 1 \cdot (-3) = 9 - 3 - 3 = 3 \] ### Step 2: Express the Given Vector in Terms of Scalar Triple Products The expression we need to evaluate can be simplified using the scalar triple product: \[ (\vec{a} \cdot \vec{S})(\vec{b} \times \vec{c}) + (\vec{b} \cdot \vec{S})(\vec{c} \times \vec{a}) + (\vec{c} \cdot \vec{S})(\vec{a} \times \vec{b}) = 3(\vec{S} \cdot \vec{a} \times \vec{b} \times \vec{c}) \] ### Step 3: Calculate the Magnitude Since \(\vec{S}\) is a unit vector, we have: \[ \text{Magnitude} = |3(\vec{S} \cdot \vec{a} \times \vec{b} \times \vec{c})| = 3 \cdot |\vec{S}| = 3 \cdot 1 = 3 \] ### Final Result Thus, the magnitude of the vector is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 103

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 106

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

If vec a=3hati-hatj+4hatk, vecb=2hati+3hatj-hatk and vec c=-5hati+2hatj+3hatk , then vec a.(vecb xx vec c) is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3cevc .

If vecA = 2 hati + hatj + hatk and vecB = hati + hatj + hatk are two vectores, then the unit vector is

If vecA=2hati-hatj-3hatk and vecB=hati+2hatj-hatk and vec C=hati+3hatj-2hatk find (vecAxxvecB)xxvecC

If veca=x hati+y hatj+z hatk, vecb=y hati+z hatj+x hatk, and vec c=z hati+x hatj+y hatk , then veca xx (vecb xx vec c) is :

NTA MOCK TESTS-NTA JEE MOCK TEST 104-MATHEMATICS
  1. if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

    Text Solution

    |

  2. The value of lim(xrarr0^(+))((x cot x)+(x lnx)) is equal to

    Text Solution

    |

  3. Which of the following is true? (i) If p is a statement then ~p is n...

    Text Solution

    |

  4. Two poles of height a and b stand at the centers of two circular plots...

    Text Solution

    |

  5. Let veca=hati+hatj+hatk,vecb=hati+4hatj-hatk and vec c =hati+hatj+2hat...

    Text Solution

    |

  6. Two numbers a and b are chosen simultaneously from the set of integers...

    Text Solution

    |

  7. Let the matrix A=[(1,2,3),(0, 1,2),(0,0,1)] and BA=A where B represent...

    Text Solution

    |

  8. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  9. The maximum negative integral value of b for which the point (2b+3, b^...

    Text Solution

    |

  10. The numberof ways in which 2n distinct letters (addressed) can be dist...

    Text Solution

    |

  11. From a variable point P on the tagent at the vertex of the parabola y^...

    Text Solution

    |

  12. If the complex number omega=x+iy(AA x, y in R and i^(2)=-1) satisfy th...

    Text Solution

    |

  13. If f(x) is a twice differentiable function such that f(0)=f(1)=f(2)=0....

    Text Solution

    |

  14. Let y=f(x) be a solution of the differential equation (dy)/(dx)=(y^(2)...

    Text Solution

    |

  15. The value of the integral int(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal...

    Text Solution

    |

  16. If the variance of the data 12, 14, 18, 19, 21, 36" is "lambda, then t...

    Text Solution

    |

  17. If the plane ax-by+cz=d contains the line (x-a)/(a)=(y-2d)/(b)=(z-c)/(...

    Text Solution

    |

  18. The vertices of the triangle ABC are A(0, 0), B(3, 0) and C(3, 4), whe...

    Text Solution

    |

  19. If cos2x+2 cos x=1, then (sin^(2)x)(2-cos^(2)x) is equal to

    Text Solution

    |

  20. Consider int(3x^(4)+2x^(2)+1)/(sqrt(x^(4)+x^(2)+1))dx=f(x). If f(1)=sq...

    Text Solution

    |