Home
Class 12
MATHS
If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7...

If `P=[(lambda,0),(7,1)]` and `Q=[(4,0),(-7,1)]` such that `P^(2)=Q`, then `P^(3)` is equal to

A

`[(-8,0),(21,1)]`

B

`[(10,1),(8,0)]`

C

`[(7,0),(8,1)]`

D

`[(6,0),(4,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P^3 \) given that \( P^2 = Q \) and the matrices \( P \) and \( Q \) are defined as follows: \[ P = \begin{pmatrix} \lambda & 0 \\ 7 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} 4 & 0 \\ -7 & 1 \end{pmatrix} \] ### Step 1: Calculate \( P^2 \) To find \( P^2 \), we multiply matrix \( P \) by itself: \[ P^2 = P \cdot P = \begin{pmatrix} \lambda & 0 \\ 7 & 1 \end{pmatrix} \cdot \begin{pmatrix} \lambda & 0 \\ 7 & 1 \end{pmatrix} \] Calculating the elements of \( P^2 \): - First row, first column: \[ \lambda \cdot \lambda + 0 \cdot 7 = \lambda^2 \] - First row, second column: \[ \lambda \cdot 0 + 0 \cdot 1 = 0 \] - Second row, first column: \[ 7 \cdot \lambda + 1 \cdot 7 = 7\lambda + 7 \] - Second row, second column: \[ 7 \cdot 0 + 1 \cdot 1 = 1 \] Thus, we have: \[ P^2 = \begin{pmatrix} \lambda^2 & 0 \\ 7\lambda + 7 & 1 \end{pmatrix} \] ### Step 2: Set \( P^2 \) equal to \( Q \) Since \( P^2 = Q \), we equate the matrices: \[ \begin{pmatrix} \lambda^2 & 0 \\ 7\lambda + 7 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ -7 & 1 \end{pmatrix} \] From this, we can derive two equations: 1. \( \lambda^2 = 4 \) 2. \( 7\lambda + 7 = -7 \) ### Step 3: Solve for \( \lambda \) From the first equation: \[ \lambda^2 = 4 \implies \lambda = 2 \text{ or } \lambda = -2 \] From the second equation: \[ 7\lambda + 7 = -7 \implies 7\lambda = -14 \implies \lambda = -2 \] Thus, the only valid solution is: \[ \lambda = -2 \] ### Step 4: Substitute \( \lambda \) back into \( P \) Now substituting \( \lambda = -2 \) into \( P \): \[ P = \begin{pmatrix} -2 & 0 \\ 7 & 1 \end{pmatrix} \] ### Step 5: Calculate \( P^3 \) To find \( P^3 \), we need to calculate \( P^2 \) first, which we already found: \[ P^2 = Q = \begin{pmatrix} 4 & 0 \\ -7 & 1 \end{pmatrix} \] Now we calculate \( P^3 = P^2 \cdot P \): \[ P^3 = \begin{pmatrix} 4 & 0 \\ -7 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 0 \\ 7 & 1 \end{pmatrix} \] Calculating the elements of \( P^3 \): - First row, first column: \[ 4 \cdot -2 + 0 \cdot 7 = -8 \] - First row, second column: \[ 4 \cdot 0 + 0 \cdot 1 = 0 \] - Second row, first column: \[ -7 \cdot -2 + 1 \cdot 7 = 14 + 7 = 21 \] - Second row, second column: \[ -7 \cdot 0 + 1 \cdot 1 = 1 \] Thus, we have: \[ P^3 = \begin{pmatrix} -8 & 0 \\ 21 & 1 \end{pmatrix} \] ### Final Answer \[ P^3 = \begin{pmatrix} -8 & 0 \\ 21 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 106

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 108

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If P =[(3,4),(-1,2),(0,1)] and Q = [(-1, 2,1),(1,2,3)] , then (P^(T) + Q)=

Let P and Q be 3xx3 matrices with P!=Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P, then determinant of (P^(2)+Q^(2)) is equal to (1)2(2)1(3)0(4)1

Is P(7,0) and Q (0,7) represent the same point ?

If P=[{:(3,4),(2,-1),(0,5):}]" and "Q=[{:(7,-5),(-4," "0),(2," "6):}] , verify that (P+Q)'=(P'+Q').

If p/q = 5/7 then (3p)/(4q) =square

If p^(2)+q^(2)=1,p,q in R, then (1+p+iq)/(1+p-iq) is equal to

If P=(1,2,3,4,5,6,7) and Q=(2,5,8,9) , then find P-Q.

If p(x)=ax^(2)+bx and q(x)=lx^(2)+mx+n with p(1)=q(1), p(2)-q(2)=1 , and p(3)-q(3)=4 , then p(4)-q(4) is equal to

Let P=[[1,0,04,1,016,4,1]] and I be the identity matrix of order 3. If Q=[qij] is a matrix, such that P^(50)-Q=I, then (q_(31)+q_(32))/(q_(21)) equals

NTA MOCK TESTS-NTA JEE MOCK TEST 107-MATHEMATICS
  1. The coefficient of x^(48) in the expansion of (1+x^(4))(1+x^(24))(1+x^...

    Text Solution

    |

  2. If i^(2)-1 and Sigma(r=1)^(n)(i)^(r ) AA n in N, is a non - zero real ...

    Text Solution

    |

  3. If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q, then P...

    Text Solution

    |

  4. The system of equations x+py=0, y+pz=0 and z+px=0 has infinitely many ...

    Text Solution

    |

  5. The value of the integral int(0)^(1){4t^(3)(1+t)^(8)+8t^(4)(1+t)^(7)}d...

    Text Solution

    |

  6. The focal chords of the parabola y^(2)=16x which are tangent to the ci...

    Text Solution

    |

  7. The equation of the circumcricle of the x^(2)-8x+12=0 and y^(2)-14y+45...

    Text Solution

    |

  8. Let A, B, C be three events and barA, barB, barC be their correspondin...

    Text Solution

    |

  9. The area (in sq. units) of the region in the first quadrant bounded by...

    Text Solution

    |

  10. If the line (x-4)/(1)=(y-2)/(1)=(z-q)/(p) lies completely in the plane...

    Text Solution

    |

  11. Which of the following statement is converse of the statement ''if if ...

    Text Solution

    |

  12. Let y(x) is the solution of the differential equation (x+2)(dy)/(dx)-(...

    Text Solution

    |

  13. For a differentiable function f(x), if f'(2)=2 and f'(3)=1, then the v...

    Text Solution

    |

  14. For p gt 2 and x in R, if the number of natural numbers in the range o...

    Text Solution

    |

  15. Let vec(V(1))=hati+ahatj+hatk, vec(V(2))=hatj+ahatk and vec(V(3))=ahat...

    Text Solution

    |

  16. The orthocentre of the triangle whose vertices are (1, 1), (5, 1) and ...

    Text Solution

    |

  17. Let a in (0,(pi)/(2)) and f(x)=sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2...

    Text Solution

    |

  18. A normal is drawn to the ellipse (x^(2))/(9)+y^(2)=1 at the point (3co...

    Text Solution

    |

  19. The natural domain of the function f(x)=sqrt(sin^(-1)(2x)+(pi)/(3)) is

    Text Solution

    |

  20. In the interval [0, 2], on which of the following function Lagrange's ...

    Text Solution

    |