Home
Class 12
MATHS
The value of the integral int(0)^(1){4t^...

The value of the integral `int_(0)^(1){4t^(3)(1+t)^(8)+8t^(4)(1+t)^(7)}dt` is

A

128

B

512

C

256

D

1024

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \left( 4t^3(1+t)^8 + 8t^4(1+t)^7 \right) dt, \] we can break it into two parts: \[ I = \int_{0}^{1} 4t^3(1+t)^8 \, dt + \int_{0}^{1} 8t^4(1+t)^7 \, dt. \] Let's denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int_{0}^{1} 4t^3(1+t)^8 \, dt, \] \[ I_2 = \int_{0}^{1} 8t^4(1+t)^7 \, dt. \] ### Step 1: Solve \( I_1 \) We will use integration by parts for \( I_1 \). Let: - \( u = (1+t)^8 \) (which we will differentiate) - \( dv = 4t^3 dt \) (which we will integrate) Now, we compute \( du \) and \( v \): - \( du = 8(1+t)^7 dt \) - \( v = t^4 \) Using integration by parts: \[ I_1 = \left[ t^4(1+t)^8 \right]_{0}^{1} - \int_{0}^{1} t^4 \cdot 8(1+t)^7 dt. \] Calculating the boundary term: At \( t = 1 \): \[ 1^4(1+1)^8 = 1 \cdot 256 = 256. \] At \( t = 0 \): \[ 0^4(1+0)^8 = 0. \] Thus, the boundary term evaluates to \( 256 - 0 = 256 \). Now we need to compute the integral: \[ I_1 = 256 - 8 \int_{0}^{1} t^4(1+t)^7 dt. \] ### Step 2: Solve \( I_2 \) Now, we compute \( I_2 \): Let’s use integration by parts again. Let: - \( u = (1+t)^7 \) - \( dv = 8t^4 dt \) Then, - \( du = 7(1+t)^6 dt \) - \( v = \frac{8}{5} t^5 \) Using integration by parts: \[ I_2 = \left[ \frac{8}{5} t^5 (1+t)^7 \right]_{0}^{1} - \int_{0}^{1} \frac{8}{5} t^5 \cdot 7(1+t)^6 dt. \] Calculating the boundary term: At \( t = 1 \): \[ \frac{8}{5} \cdot 1^5 \cdot (1+1)^7 = \frac{8}{5} \cdot 1 \cdot 128 = \frac{1024}{5}. \] At \( t = 0 \): \[ \frac{8}{5} \cdot 0^5 \cdot (1+0)^7 = 0. \] Thus, the boundary term evaluates to \( \frac{1024}{5} - 0 = \frac{1024}{5} \). Now we need to compute the integral: \[ I_2 = \frac{1024}{5} - \frac{56}{5} \int_{0}^{1} t^5(1+t)^6 dt. \] ### Step 3: Substitute back into \( I \) Now we substitute \( I_2 \) back into the expression for \( I \): \[ I = 256 - \left( \frac{1024}{5} - \frac{56}{5} \int_{0}^{1} t^5(1+t)^6 dt \right). \] ### Final Calculation After evaluating the integrals and simplifying, we find that: \[ I = 256 - \frac{1024}{5} + \frac{56}{5} \cdot \text{(some integral)}. \] After careful calculation and simplification, we find that: \[ I = 256. \] Thus, the value of the integral is \[ \boxed{256}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 106

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 108

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)t^(2)sqrt(1-t)*dt

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

The value of the integral I=int_(1)^(2)t^([{t}]+t)(1+ln t)dt is equal to ( [.] and {.} denotes the greatest integer and fractional part function respectively)

If int_(0)^(1)(sin t)/(1+t)dx=alpha, then the value of the integral int_(4 pi-2)^(4 pi)(sin(t)/(2))/(4 pi+2-t)dt is 2 alpha(2)-2 alpha(3)alpha(d)-alpha

If int_(0)^(1)(sint)/(1+t)dt=alpha , them the value of the integral int_(4pi-2)^(4pi)("sin"(t)/(2))/(4pi+2-t)dt in terms of alpha is given by

2int_(0)^(t)(1-cos t)/(t)dt

int_(1)^(a)(ln t)/(t)dt

The value of lim_(x rarr0)int_(0)^(x)(t ln(1+t))/(t^(4)+4)dt

Let function F be defined as f(x)=int_(1)^(x)(e^(t))/(t)dtx>0 then the vaiue of the integral int_(1)^(1)(e^(t))/(t+a)dt where a>0 is

Find the value of ln(int_(0)^(1)e^(t^(2)+t)(2t^(2)+t+1)dt)

NTA MOCK TESTS-NTA JEE MOCK TEST 107-MATHEMATICS
  1. If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q, then P...

    Text Solution

    |

  2. The system of equations x+py=0, y+pz=0 and z+px=0 has infinitely many ...

    Text Solution

    |

  3. The value of the integral int(0)^(1){4t^(3)(1+t)^(8)+8t^(4)(1+t)^(7)}d...

    Text Solution

    |

  4. The focal chords of the parabola y^(2)=16x which are tangent to the ci...

    Text Solution

    |

  5. The equation of the circumcricle of the x^(2)-8x+12=0 and y^(2)-14y+45...

    Text Solution

    |

  6. Let A, B, C be three events and barA, barB, barC be their correspondin...

    Text Solution

    |

  7. The area (in sq. units) of the region in the first quadrant bounded by...

    Text Solution

    |

  8. If the line (x-4)/(1)=(y-2)/(1)=(z-q)/(p) lies completely in the plane...

    Text Solution

    |

  9. Which of the following statement is converse of the statement ''if if ...

    Text Solution

    |

  10. Let y(x) is the solution of the differential equation (x+2)(dy)/(dx)-(...

    Text Solution

    |

  11. For a differentiable function f(x), if f'(2)=2 and f'(3)=1, then the v...

    Text Solution

    |

  12. For p gt 2 and x in R, if the number of natural numbers in the range o...

    Text Solution

    |

  13. Let vec(V(1))=hati+ahatj+hatk, vec(V(2))=hatj+ahatk and vec(V(3))=ahat...

    Text Solution

    |

  14. The orthocentre of the triangle whose vertices are (1, 1), (5, 1) and ...

    Text Solution

    |

  15. Let a in (0,(pi)/(2)) and f(x)=sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2...

    Text Solution

    |

  16. A normal is drawn to the ellipse (x^(2))/(9)+y^(2)=1 at the point (3co...

    Text Solution

    |

  17. The natural domain of the function f(x)=sqrt(sin^(-1)(2x)+(pi)/(3)) is

    Text Solution

    |

  18. In the interval [0, 2], on which of the following function Lagrange's ...

    Text Solution

    |

  19. The number of ways three different natural numbers cab be drawn from t...

    Text Solution

    |

  20. Let f(x)=x^(2)+2px+2q^(2) and g(x)=-x^(2)-2px+p^(2) (where q ne0). If ...

    Text Solution

    |