Home
Class 12
MATHS
If ((2+cosx)/(3+y))(dy)/(dx)+sinx=0 and ...

If `((2+cosx)/(3+y))(dy)/(dx)+sinx=0` and `y(0)=1`, then `y((pi)/(3))` is equal to

A

`(4)/(3)`

B

`(7)/(3)`

C

`(1)/(3)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ \frac{(2 + \cos x)}{(3 + y)} \frac{dy}{dx} + \sin x = 0 \] with the initial condition \( y(0) = 1 \), we will follow these steps: ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{(2 + \cos x)}{(3 + y)} \frac{dy}{dx} = -\sin x \] This leads to: \[ \frac{dy}{dx} = -\frac{(3 + y) \sin x}{(2 + \cos x)} \] ### Step 2: Separating Variables Next, we separate the variables \(y\) and \(x\): \[ \frac{dy}{3 + y} = -\frac{\sin x}{2 + \cos x} dx \] ### Step 3: Integrating Both Sides Now, we integrate both sides: \[ \int \frac{dy}{3 + y} = \int -\frac{\sin x}{2 + \cos x} dx \] The left side integrates to: \[ \ln |3 + y| \] For the right side, we can use the substitution \(u = 2 + \cos x\), which gives \(du = -\sin x \, dx\): \[ \int -\frac{\sin x}{2 + \cos x} dx = \int \frac{1}{u} du = \ln |u| = \ln |2 + \cos x| \] Thus, we have: \[ \ln |3 + y| = \ln |2 + \cos x| + C \] ### Step 4: Exponentiating Both Sides Exponentiating both sides gives: \[ 3 + y = k(2 + \cos x) \] where \(k = e^C\). ### Step 5: Applying Initial Condition Using the initial condition \(y(0) = 1\): \[ 3 + 1 = k(2 + \cos(0)) \Rightarrow 4 = k(2 + 1) \Rightarrow 4 = 3k \Rightarrow k = \frac{4}{3} \] ### Step 6: Finding the Expression for \(y\) Substituting \(k\) back into the equation gives: \[ 3 + y = \frac{4}{3}(2 + \cos x) \] Thus, \[ y = \frac{4}{3}(2 + \cos x) - 3 \] ### Step 7: Simplifying the Expression This simplifies to: \[ y = \frac{8}{3} + \frac{4}{3} \cos x - 3 = \frac{4}{3} \cos x - \frac{1}{3} \] ### Step 8: Finding \(y\) at \(x = \frac{\pi}{3}\) Now we need to find \(y\) at \(x = \frac{\pi}{3}\): \[ y\left(\frac{\pi}{3}\right) = \frac{4}{3} \cos\left(\frac{\pi}{3}\right) - \frac{1}{3} \] Since \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\): \[ y\left(\frac{\pi}{3}\right) = \frac{4}{3} \cdot \frac{1}{2} - \frac{1}{3} = \frac{2}{3} - \frac{1}{3} = \frac{1}{3} \] ### Final Answer Thus, the value of \(y\left(\frac{\pi}{3}\right)\) is: \[ \boxed{\frac{1}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 107

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 109

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If (dy)/(dx)+y tan x=sin2x and y(0)=1, then y(pi) is equal to:

If (2+sinx)(dy)/(dx)+(y+1)cosx=0 and y(0)=1 , then y((pi)/(2)) is equal to

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to

If (2+sinx)(dy)/(dx)+(y+1)cosx=0andy(0)=1, then y((pi)/(2)) is equal to

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to :

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to -(1)/(3)(2)(4)/(3) (3) (1)/(3)(4)-(2)/(3)

NTA MOCK TESTS-NTA JEE MOCK TEST 108-MATHEMATICS
  1. Let f(x) be a differentiable function such that int(t)^(t^(2))xf(x)dx=...

    Text Solution

    |

  2. If the area bounded by y^(2)=4ax and x^(2)=4ay is (64)/(3) square unit...

    Text Solution

    |

  3. If ((2+cosx)/(3+y))(dy)/(dx)+sinx=0 and y(0)=1, then y((pi)/(3)) is eq...

    Text Solution

    |

  4. The area (in square units) of the triangle bounded by x = 4 and the li...

    Text Solution

    |

  5. The angle between the tangents drawn from the point (2, 6) to the para...

    Text Solution

    |

  6. If f(x)=cosx+sinx and g(x)=x^(2)-1, then g(f(x)) is injective in the i...

    Text Solution

    |

  7. The value of lim(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is...

    Text Solution

    |

  8. If int(x)/(x+1+e^(x))dx=px+qln|x+1+e^(x)|+c, where c is the constant o...

    Text Solution

    |

  9. Let X(n) denote the mean of first n natural numbers, then the mean of ...

    Text Solution

    |

  10. Let f(x)=(sinx+3sin3x+5sin5x+3sin7x)/(sin2x+2sin4x+3sin6x), wherever d...

    Text Solution

    |

  11. If two points A and B lie on the curve y=x^(2) such that vec(OA).hati=...

    Text Solution

    |

  12. A man alternately tosses a coin and throw a dice, beginning with the c...

    Text Solution

    |

  13. A plane P passes through the point (1, 1,1) and is parallel to the vec...

    Text Solution

    |

  14. Let A and B two non singular matrices of same order such that (AB)^(k)...

    Text Solution

    |

  15. The value of Sigma(r=1)^(n)(-1)^(r+1)(""^(n)C(r))/(r+1)) is equal to

    Text Solution

    |

  16. If alpha and beta are the roots of the equation x^(2)+alpha x+beta=0 s...

    Text Solution

    |

  17. Given alpha and beta are the roots of the quadratic equation x^(2)-4x+...

    Text Solution

    |

  18. The equation cos^(4)x-sin^(4)x+cos2x+alpha^(2)+alpha=0 will have at le...

    Text Solution

    |

  19. The radius of the circle with centre at (3, 2) and whose common chord ...

    Text Solution

    |

  20. Let f(x)=[x]{x^(2)}+[x][x^(2)]+{x}[x^(2)]+{x}{x^(2)}, AA x in [0, 10] ...

    Text Solution

    |