Home
Class 12
MATHS
If i^(2)=-1 and ((1+i)/(sqrt2))^(n)=((1-...

If `i^(2)=-1` and `((1+i)/(sqrt2))^(n)=((1-i)/(sqrt2))^(m)=1, AA n, m in N`, then the minimum value of `n+m` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: \[ \left(\frac{1+i}{\sqrt{2}}\right)^n = \left(\frac{1-i}{\sqrt{2}}\right)^m = 1 \] ### Step 1: Convert to Exponential Form We can express the complex numbers \(1+i\) and \(1-i\) in exponential form. 1. Calculate the modulus and argument of \(1+i\): - Modulus: \[ |1+i| = \sqrt{1^2 + 1^2} = \sqrt{2} \] - Argument: \[ \theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4} \] - Therefore, \[ 1+i = \sqrt{2} e^{i \frac{\pi}{4}} \] 2. Calculate the modulus and argument of \(1-i\): - Modulus: \[ |1-i| = \sqrt{1^2 + (-1)^2} = \sqrt{2} \] - Argument: \[ \theta = \tan^{-1}\left(\frac{-1}{1}\right) = -\frac{\pi}{4} \] - Therefore, \[ 1-i = \sqrt{2} e^{-i \frac{\pi}{4}} \] ### Step 2: Substitute into the Original Equations Now we substitute these into the original equations: 1. For the first equation: \[ \left(\frac{1+i}{\sqrt{2}}\right)^n = \left(\frac{\sqrt{2} e^{i \frac{\pi}{4}}}{\sqrt{2}}\right)^n = (e^{i \frac{\pi}{4}})^n = e^{i \frac{n \pi}{4}} = 1 \] This implies: \[ \frac{n \pi}{4} = 2k\pi \quad \text{for some integer } k \] Thus, \[ n = 8k \] 2. For the second equation: \[ \left(\frac{1-i}{\sqrt{2}}\right)^m = \left(\frac{\sqrt{2} e^{-i \frac{\pi}{4}}}{\sqrt{2}}\right)^m = (e^{-i \frac{\pi}{4}})^m = e^{-i \frac{m \pi}{4}} = 1 \] This implies: \[ -\frac{m \pi}{4} = 2j\pi \quad \text{for some integer } j \] Thus, \[ m = -8j \] ### Step 3: Determine Natural Number Values Since \(n\) and \(m\) must be natural numbers (positive integers), we can set \(k = 1\) and \(j = -1\) (the smallest positive values): - For \(k = 1\): \[ n = 8 \times 1 = 8 \] - For \(j = -1\): \[ m = -8 \times (-1) = 8 \] ### Step 4: Calculate \(n + m\) Now, we find the minimum value of \(n + m\): \[ n + m = 8 + 8 = 16 \] ### Final Answer Thus, the minimum value of \(n + m\) is: \[ \boxed{16} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 107

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 109

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

n in N,((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

If n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8)n is

If ((1+i)/(1-i))^(m/2)=((1+i)/(-1+i))^(n/3)=1 . Find the G.C.D. of m,n

If i=sqrt(-1) , then {i^(n)+i^(-n), n in Z} is equal to

Show that ((-1+sqrt(3)i)/(2))^(n)+((-1-sqrt(3i))/(2))^(n) is equal to 2 when n is a multiple of 3 and 3 is equal to -1 when n is any other positive integer.

If ((1+i)/(1-i))^((m)/(2))=((1+i)/(1-i))^((n)/(3))=1, (m, ninN) then the greatest common divisor of the least values of m and n is .............

If I_(n)=int_(1)^(e)(ln x)^(n)dx(n is a natural number) then I_(2020)+nI_(m)=e, where n,m in N .The value of m+n is equal to

Prove that 1+(1)/(sqrt2)+(1)/(sqrt3)+....+(1)/(sqrtn) ge sqrtn, AA n in N

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

NTA MOCK TESTS-NTA JEE MOCK TEST 108-MATHEMATICS
  1. The angle between the tangents drawn from the point (2, 6) to the para...

    Text Solution

    |

  2. If f(x)=cosx+sinx and g(x)=x^(2)-1, then g(f(x)) is injective in the i...

    Text Solution

    |

  3. The value of lim(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is...

    Text Solution

    |

  4. If int(x)/(x+1+e^(x))dx=px+qln|x+1+e^(x)|+c, where c is the constant o...

    Text Solution

    |

  5. Let X(n) denote the mean of first n natural numbers, then the mean of ...

    Text Solution

    |

  6. Let f(x)=(sinx+3sin3x+5sin5x+3sin7x)/(sin2x+2sin4x+3sin6x), wherever d...

    Text Solution

    |

  7. If two points A and B lie on the curve y=x^(2) such that vec(OA).hati=...

    Text Solution

    |

  8. A man alternately tosses a coin and throw a dice, beginning with the c...

    Text Solution

    |

  9. A plane P passes through the point (1, 1,1) and is parallel to the vec...

    Text Solution

    |

  10. Let A and B two non singular matrices of same order such that (AB)^(k)...

    Text Solution

    |

  11. The value of Sigma(r=1)^(n)(-1)^(r+1)(""^(n)C(r))/(r+1)) is equal to

    Text Solution

    |

  12. If alpha and beta are the roots of the equation x^(2)+alpha x+beta=0 s...

    Text Solution

    |

  13. Given alpha and beta are the roots of the quadratic equation x^(2)-4x+...

    Text Solution

    |

  14. The equation cos^(4)x-sin^(4)x+cos2x+alpha^(2)+alpha=0 will have at le...

    Text Solution

    |

  15. The radius of the circle with centre at (3, 2) and whose common chord ...

    Text Solution

    |

  16. Let f(x)=[x]{x^(2)}+[x][x^(2)]+{x}[x^(2)]+{x}{x^(2)}, AA x in [0, 10] ...

    Text Solution

    |

  17. If the line 2x+sqrt6y=2 touches the hyperbola x^(2)-2y^(2)=a^(2), then...

    Text Solution

    |

  18. If i^(2)=-1 and ((1+i)/(sqrt2))^(n)=((1-i)/(sqrt2))^(m)=1, AA n, m in ...

    Text Solution

    |

  19. If a, b and c are non - zero real numbers and if system of equations (...

    Text Solution

    |

  20. The number of quadratic polynomials ax^(2)+2bx+c which satisfy the fol...

    Text Solution

    |