Home
Class 11
PHYSICS
A particle moved from position vec r(1) ...

A particle moved from position `vec r_(1) = 3 hat i + 2 hat j - 6 hat k` to position `vec r_(2) = 14 hat i + 13 hat j + 9 hat k ` under the action of a force `( 4 hat i + hat j + 3 hat k)` newton. Find the work done

A

10 J

B

100 J

C

0.01 J

D

1 J

Text Solution

AI Generated Solution

The correct Answer is:
To find the work done by the force as the particle moves from one position to another, we can follow these steps: ### Step 1: Identify the initial and final position vectors The initial position vector is given as: \[ \vec{r_1} = 3 \hat{i} + 2 \hat{j} - 6 \hat{k} \] The final position vector is given as: \[ \vec{r_2} = 14 \hat{i} + 13 \hat{j} + 9 \hat{k} \] ### Step 2: Calculate the displacement vector The displacement vector \(\vec{d}\) can be calculated as: \[ \vec{d} = \vec{r_2} - \vec{r_1} \] Substituting the values: \[ \vec{d} = (14 \hat{i} + 13 \hat{j} + 9 \hat{k}) - (3 \hat{i} + 2 \hat{j} - 6 \hat{k}) \] Now, perform the subtraction component-wise: \[ \vec{d} = (14 - 3) \hat{i} + (13 - 2) \hat{j} + (9 + 6) \hat{k} \] \[ \vec{d} = 11 \hat{i} + 11 \hat{j} + 15 \hat{k} \] ### Step 3: Identify the force vector The force vector is given as: \[ \vec{F} = 4 \hat{i} + 1 \hat{j} + 3 \hat{k} \] ### Step 4: Calculate the work done The work done \(W\) by the force is given by the dot product of the force vector and the displacement vector: \[ W = \vec{F} \cdot \vec{d} \] Substituting the vectors: \[ W = (4 \hat{i} + 1 \hat{j} + 3 \hat{k}) \cdot (11 \hat{i} + 11 \hat{j} + 15 \hat{k}) \] Calculating the dot product: \[ W = (4 \cdot 11) + (1 \cdot 11) + (3 \cdot 15) \] \[ W = 44 + 11 + 45 \] \[ W = 100 \text{ joules} \] ### Final Answer The work done by the force is: \[ \boxed{100 \text{ joules}} \]
Promotional Banner

Topper's Solved these Questions

  • WORK , ENERGY & POWER

    NARAYNA|Exercise Evaluate Yourself - 2|8 Videos
  • WORK , ENERGY & POWER

    NARAYNA|Exercise Evaluate Yourself - 3|7 Videos
  • WORK , ENERGY & POWER

    NARAYNA|Exercise EXERCISE IV|43 Videos
  • WAVES

    NARAYNA|Exercise Exercise-IV|56 Videos
  • WORK POWER AND ENERGY

    NARAYNA|Exercise Level-VI (Integer)|12 Videos

Similar Questions

Explore conceptually related problems

A particle moves from position vector vecr_1 = ( 23 hat I + 2 hat j - 6 hat k) to position vector, vec r-2 = ( 14 hat I + 13 hat j+ 9 hat k) in metre under the action of a constant force of vec F = 9 14 hat i+ hat j + 3 hat k) N . Calculat word done by the force.

A particle moves form position vec(s_(1))=(3hat(i)+2hat(j)-6hat(k)) m to position of vec(s_(2))=(14hat(i)+13hat(j)-9hat(k)) m, under the action of a force vec(F)=(14hat(i)+13hat(j)-9hat(k)) N, The work done by the force is

A particle is displaced from position vec(r )_(1) = (3hat(i) + 2hat(j) + 6hat(k)) to another position vec(r )_(2)= (14hat(i) + 13hat(j) + 9hat(k)) under the impact of a force 5 hat(i)N . The work done will be given by

A body is displaced from vec r_(A) =(2hat i + 4hatj -6hat k) to vecr_(B) = (6hat i -4hat j +3 hat k) under a constant force vec F = (2 hat i + 3 hat j - hat k) . Find the work done.

If vec A =4 hat I + 6 hat j -3 hat k and vec B =- 2 hat I -5 hat j + 7 hat k , find the angle between vec A and vec B .

If vec A = hat i + 3 hat j + 2 hat K and vec B = 3 hat i + hat j + 2 hat k , then find the vector product vec A xx vec B .

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

Work done by a force F on a body is W = F .s, where s is the displacement of body. Given that under a force F = (2 hat I +3 hat j +4 hat k) N a body is displaced from position vector r_1 = (2 hat I +3 hat j + hat k) m to the position vector r_2 = (hat i +hat j+ hat k) m. Find the work done by this force.

If vec F =2 hat i + 3hat j +4hat k acts on a body and displaces it by vec S =3 hat i + 2hat j + 5 hat k , then the work done by the force is

Find the projection of vec(a) = 2 hat(i) - hat(j) + hat(k) on vec(b) = hat(i) - 2 hat(j) + hat(k) .