Home
Class 12
MATHS
If sum(i=1)^(9) (x(i)-5) " and" sum(i=1)...

If `sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45`, then the standard deviation of the 9 items `x_(1),x_(2),..,x_(9)` is

A

3

B

9

C

4

D

2

Text Solution

Verified by Experts

The correct Answer is:
D

Let `x_(i)-5=y_(i)`
`therefore underset(i=1)overset(9)(sum y_(i)=9) " and" underset(i=1)overset(9)(sum y_(i)^(2))=45`
So, required standard deviation is
`sigma=sqrt((underset(i=1)overset(9)(sum y_(i)^(2)))/(9)-((underset(i=1)overset(9)(sum y_(i)))/(9))^(2))=sqrt((45)/(9)-((9)/(9))^(2))=2`
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    CENGAGE|Exercise Exercise (Single)|39 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • STRAIGHT LINE

    CENGAGE|Exercise Multiple Correct Answers Type|8 Videos

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(9)(x_(i)-5)=9 and sum_(i=1)^(9)(x_(i)-5)^(2)=45 then the standard deviation of the 9 items x_(1),x_(2),......,x_(9) is

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If sum_(i=1)^(18)(x_(i)-8)=9 and sum_(i=1)^(18)(x_(i)-8)^(2)=45 then the standard deviation of x_(1),x_(2),...,x_(18) is

If sum_(i=1)^n (x_i -a) =n and sum_(i=1)^n (x_i - a)^2 =na then the standard deviation of variate x_i

In a group of data, there are n observations, x,x_(2), ..., x_(n)." If "sum_(i=1)^(n)(x_(i)+1)^(2)=9n and sum_(i=1)^(n)(x_(i)-1)^(2)=5n , the standard deviation of the data is

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(n)(x_(i)+1)^(2)=9n and sum_(i=1)^(n)(x_(i)-1)^(2)=5n, then standard deviation of these backslash 'n' observations (x_(1)) is: (1)2sqrt(3)(2)sqrt(3)(3)sqrt(5)(4)3sqrt(2)