Home
Class 12
MATHS
If (x(y+z-x))/(logx)=(y(z+x-y))/(logy)(...

If `(x(y+z-x))/(logx)=(y(z+x-y))/(logy)(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x`

Text Solution

Verified by Experts

Let `(x(y+z-x))/(log_(a) x) = (y(z+x-y))/(log_(a)y) = (z(x+y-z))/(log_(a) z) = k`
` rArr log_(a) x = (x(y+z-x))/k`
` rArr x = a^((x(y+z-x))/k)`
Similarly,` y = a ^((y(x+z-y))/k) and z=a^((z(x+y-z))/k)`
Now `x^(y)y^(x) = a^ ((xy(y+z-x))/k)a^((yx(z+x-y))/k)`
` = a ^((xy^(2)+xyz-x^(2)y+xyz+x^(2)y-xy^(2))/k)=a^((2xyz)/k)`
Similarly,` z^(y)y^(z) = x^(z)z^(x) = a^((2xyz)/k)`.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

(If(y+z-x))/((x(y+z-x))/(log y))=(y(z+x-y))/(log y)(z(x+y-z))/(log z), prove that x^(y)y^(x)=z^(x)y^(z)=x^(z)z^(x)

If (y+z-x)/(log x)=y(z+x-y)/(log y)=z(x+y-z)/(log z) Prove that x^(y)y^(x)=z^(y)y^(z)=x^(z)z^(x)

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If x=y^z,y=z^x,z=x^y then

If a^(x)=(x+y+z)^(y), a^(y)=(x+y+z)^(z), a^(z)=(x+y+z)^(x) , then :