Home
Class 12
MATHS
Which of the following pairs of expressi...

Which of the following pairs of expression are defined for the same set of values of `x` ? `f_1(x)=2(log)_2xa n df_2(x)=(log)_(10)x^2` `f_1(x)=(log)_xx^2a n df_2(x)=2` `f_1(x)=(log)_(10)(x-2)+(log)_(10)(x-3)a n df_(2(x))=(log)_(10)(x-2)(x-3)dot`

Text Solution

Verified by Experts

(i)`f_(1)(x) = 2 log_(10)x" is defined for "x gt 0`
` f_(2)(x) = log_(10)x^(2)" is defined for "x^(2) gt 0 or x in R - {0}`
Therefore ` f_(1)(x) and f_(2)(x)` are not defined for same set of values of x.
(ii) `f_(1)(x) = log_(x) x^(2)" is defined for "x gt 0, x ne 1`
`:. f_(1)(x) = 2, x gt 0, x ne 1`
But `f_(2)(x) = 2` is defined for all real x.
Therefore `f_(1)(x) and f_(2)(x)` are not defined for same set of values of x.
(iii) `f_(1)(x) = log_(10)(x-2)+log_(10)(x-3)" is defined if "x-2 gt 0 and x - 3 gt 0`
`:. x gt 3`
`f_(2)(x) = log_(0)(x-2)(x-3)" is defined if "(x-2)(x-3) gt 0 `
` :. x lt 2 or x gt 3`
Therefore ` f_(1)(x) and f_(2)(x)` are not defined for same set of values of x.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Which of the following pairs of expression are defined for the same set of values of x?f_(1)(x)=2log_(2)x and f_(2)(x)=log_(10)x^(2)f_(1)(x)=log_(x)x^(2) and f_(2)(x)=2f_(1)(x)=log_(10)(x-2)+log_(10)(x-3) and f_(2(x))=log_(10)(x-2)(x-3)

(x-2)^(log_(10)^(2)(x-2)+log_(10)(x-2)^(5)-12)=10^(2log_(10)(x-2))

((log)_(10)(x-3))/((log)_(10)(x^(2)-21))=(1)/(2)

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

((log_(10)x)/(2))^(log_(10)^(2)x+log_(10)x^(2)-2)=log_(10)sqrt(x)

If (1)/(log_(x)10)=(2)/(log_(a)10)-2, then x=

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

(1)/(2)log_(10)x+3log_(10)sqrt(2+x)=log_(10)sqrt(x(x+2))+2

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

4^(log_(10)x+1)-6^(log_(10)x)-2*3^(log_(10)x^(2)+2)=0. Find x