Home
Class 12
MATHS
If ngt1 then prove that 1/(log2 n )+1/(l...

If `ngt1` then prove that `1/(log_2 n )+1/(log_3 n)+.................+(1/log_(53) n =1/(log_(53!) n`

Text Solution

Verified by Experts

The given expression is equal to
`log_(n) 2+ log_(n) 3 +...+log_(n) 53 = log_(n) (2 xx 3 xx ...xx53)`
` log_(n) 53! = 1/(log_(53!^(n)))`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If n>1 then prove that (1)/(log_(2)n)+(1)/(log_(3)n)+............+((1)/(log_(53)n)=(1)/(log_(53!)n)

If n>1, then prove that(1)/(log_(2)n)+(1)/(log_(3)n)+...+(1)/(log_(53)n)=(1)/(log_(53)n)

If n in N, prove that 1/(log_2x)+1/(log_3x)+1/(log_4x)++(1)/(log_n x)=1/(log_(n !)x)

Show that: (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+...+(1)/(log_(43)n)=(1)/(log_(43!)n)

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?