Home
Class 12
MATHS
Let a= log(3) 20, b = log(4) 15 and c =...

Let `a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12`. Then find the value of `1/(a+1)+1/(b+1)+1/(c+1)`.

Text Solution

Verified by Experts

We have
`a+1 = log_(3) 20 + log_(3) 3 = log_(3) 60`
` b+ 1 = log_(4) 15 + log_(4) 4 = log_(4) 60`
` c+1 = log_(5) 12+ log_(5) 5 = log_(5) 60`
`1/(a+1)+1/(b+1)+1/(c+1)=1/(log_(3) 60)+1/(log_(4)60)+1/(log_(5)60)`
` =log_(60)3+log_(60)4+log_(60)5`
` = log_(60)(3 xx 4 xx 5)`
` = log_(60) 60`
` = 1`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

let a=log_(3)20,b=log_(4)15,c=log_(5)12 then (1)/(a+1)+(1)/(b+1)+(1)/(c+1)

Find the value of ((1)/(log_(3)12)+(1)/(log_(4)12))

l=1+log_(a)bc,m=1+log_(b)ca,n=1+log_(c)a then the value of (1)/(l)+(1)/(m)+(1)/(n)-1

If log_(ab)a=(1)/(3) then find the value of log_(ab)((sqrt(a))/((b)^((1)/(3))))

If log_(4)5=a and log_(5)6=b, then log_(3)2 is equal to (1)/(2a+1) (b) (1)/(2b+1)(c)2ab+1(d)(1)/(2ab-1)

If log_(a)b=(1)/(2),log_(b)c=(1)/(3)backslash and backslash log_(c)a=(k)/(5) find the value of k.

If a=2^(b),b=prod_(c=2)^(15)log_(c)(c+1) ,then the value of log_(2)(log_(16) a) is :

(1/(log_(a)bc+1) + 1/(log_(b) ac +1) + 1/(log_(c)ab+1)+1) is equal to: