Home
Class 12
MATHS
If x=log(2a) a,y=log(3a) 2a and z=log(4...

If `x=log_(2a) a,y=log_(3a) 2a ` and `z=log_(4a) 3a` then prove that `xyz+1=2yz`

Text Solution

Verified by Experts

`1+xyz=1(log_(2a)a)(log_(3a)2a)(log_(4a)3a)`
`=1+(loga)/(log2a)(log2a)/(log3a)(log3a)/(log4a)`
`=1+(loga)/(log4a)`
`=log_(4a)4a+log_(4a)a`
`=log_(4a)4a^(2)=2log_(4a)2a`
`=2(log_(3a)2a)(log_(4a)3a)=2yz`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If x=(log)_(2a)a,y=(log)_(3a)2a,z=(log)_(4a)3a, prove that 1+xyz=2yz

IF x = log_(2a)a, y = log_(3a) 2a , z = log_(4a)3a , then the value of xyz + 1 is

If p = log_(2a), a, q = log_(3a) 2a and r = log_(4a), 3a , then find the value of qr(2-p).

If =1+log_(a)bc,y=1+log_(b)ca,z=1+log_(c)ab then prove that xyz=xy+yz+zx

If log_(2a)a=X,log_(3a)2a=y, and log_(4a)3a= z,then xyz-2yz is equal to

If =1+log_(a)(bc);y=1+log_(b)(ac);z=1+log_(c)(ab) then prove that xyz=xy+yz+zx

If log_(3)x+log_(3)y=2+log_(3)2 and log_(3)(x+y)=2 then value of x and y are

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .