Home
Class 12
MATHS
Find the value of 81^((1//(log)5 3))+27^...

Find the value of `81^((1//(log)_5 3))+27^log36+3^((4/((log)_7)9))`

Text Solution

Verified by Experts

`81^(a//log_(5)3)+27^(log_(9)36)+3^(4//log_(7)9)`
`=(3^(4))^(log35)+(3^(3))^(log_(3^(2))(6^(2)))+3^(4log_(9)7`
`=3^(log_(3)5^(4))+(3^(3))^(log^(3)(6))+3^(4log_(3^(2)7))`
`=5^(4)+3^(log_(3)6^(3))+3^(2log_(3)7)`
`5^(4)+6^(3)+3^(log_(3)7^(2))`
`=625+216+7^(2)`
=890
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of 81^((1/log_(5)3))+(27^(log_(9)36))+3((4)/(log_(9)9))

The value of 81^((1)/(log_(5)(3)))+27^(log_(9)(36))+3^((4)/(log7)(9))

The value of OF 81^(1/(log_5(3)))+27^(log_9(36))+3^(4/(log_7(9))) is equal to (a) 49 ((b)625 (c) 216 (d) 890

Evaluate: 81^(1//log_(5)3) + 27^(log_(9)36) + 3^(4//log_(l)9)

Find the value of : ( log )_(81)27

Find the value of 3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))

Find the value of "log"_(27)(1)/(81)