Home
Class 12
MATHS
Solve |x-1|^((log(10) x)^2-log(10) x^2=|...

Solve `|x-1|^((log_(10) x)^2-log_(10) x^2=|x-1|^3`

Text Solution

Verified by Experts

We have
`|x-1|^((log_(10)x)^(2)-log_(10)x^(2))=|x-1|^(3)`.
`rArr x = 2 or (log_(10)x)^(2)-2log_(10)x-3=0`
` rArr x = 2 or (log_(10)x-3)(log_(10)x+1)=0`
` rArr x = 2 or log_(10)x = 3, log_(10) x =- 1`
` rArr x = 2, x= 1000 or x = 0.11`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Solve for x.x^(log_(10)x+2)=10^(log_(10)x+2)

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

Solution x^((log_(10)x)^(2)-(3log_(10))^(x+1))>1000 for x in R is

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

Solve (x+1)^(log_(10)(x+1))=100(x+1)

log_(10){log10x}=1 then x

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14

The value of p in R for which the equation sin^(-1)((log_(10)x)^(2)-2log_(10)x+2)+tan^(-1)((log_(10)x)^(2)-2log_(10)x+2)+cos^(-1)((log_(10)x)^(2)-2(log_(10)x))=p possess solution is

Solve log_(10)(x^(2)-2x-2) le 0 .

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1