Home
Class 12
MATHS
Solve(x-1)/(log(3)(9-3^(x))- 3) le 1....

Solve`(x-1)/(log_(3)(9-3^(x))- 3) le 1`.

Text Solution

Verified by Experts

We have `(x-1)/(log_(3)(9-3^(x))-3) le 1`
For this, we must have ` 9-3^(x) gt 0 or 3^(x) lt 9 or x lt 2`
The given expression can be expressed as:
` ((x-1))/(log_(3)(9-3^(x))-log_(3) 27) le 1 `
` rArr ((x-1))/(log_(3)((9-3^(x))/27))le 1`
` rArr (x-1)*log_(((9-3^(x))/27)) 3 le 1`
` rArr log_(((9-3^(x))/27))(3^(x-1)) lt 1`
As ` x lt 2, 0 lt (9-3^(x))/27 lt 1`
We have ` 3^(x-1) ge (9-3^(x))/27`
` rArr 9 xx 3^(x) ge 9 - 3^(x)`
` rArr 10 xx 3^(x) ge 9`
` rArr x ge log_(3) 0.9`
Therefore, ` x in [log_(3) 0.9, 2)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Solve: (x-1)/((log)_(3)(9-3^(x))-3)<=1

Solve the following inequalities (i) |log_(3)x|-log_(3)x-3 lt 0 (ii)(x-1)/(log_(3)(9-3^(x))-3) le 1 (iii)log_((x-1)/(x-5))(x-2) gt 0 (iv) log_(x)(x^(3)-x^(2)-2x) lt 3

log_(x)(log_(9)(3^(x)-9))<1

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve :log_(3)(1+log_(3)(2^(x)-7))=1

Solve log_(3)(x-2) le 2 .

Solve :log_((x+3))(x^(2)-x)<1

Solve log_(x)(x^(2)-1) le 0 .

Solve: log_(3)(2x^(2)+6x-5)>1

Solve :log_(0.3)(x^(2)-x+1)>0