Home
Class 12
MATHS
Solve: (1/2)^(log)(10)a^2+2>3/(2^((log)(...

Solve: `(1/2)^(log)_(10)a^2+2>3/(2^((log)_(10)(-a)))`

Text Solution

Verified by Experts

`(1/2)^(log_(10)a^(2))+2 gt 3/(2^(log_(10)(-a))) `
For this to be true, we must have `a lt 0`
` rArr 1/(2^(2 log(-a)))+2 gt 3/(2^(log (-a)))`
Putting ` y = 1/(2^(log(-a)))`, we get
`y^(2)+2 gt 3y`
` rArr y^(2) - 3y + 2 gt 0`
` rArr (y-1)(y-2) gt 0`
` rArr y lt 1 or y gt 2`
` rArr 2^(-log (-a)) lt 1 or 2^(-log(-a)) gt 2`
` rArr - log_(10)(-a) lt 0 or - log_(10)(-a) gt 1`
` rArr log_(10)(-a) gt 0 or log_(10)(-a) lt - 1`
` rArr -a gt 1 or -a lt 10^(-1)`
` rArr a lt - 1 or a gt - 0.1 `
` rArr a in (- infty, - 1) cup (-0.1, 0 ) `
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Solve: ((1)/(2))^(log(x^(2)))+2>3*2^(-log(-x))

((log)_(10)(x-3))/((log)_(10)(x^(2)-21))=(1)/(2)

log_(10)3+log_(10)2-2log_(10)5

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

Find the domain of the function: f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x))})

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

Solve: |x-1|^((log_(10)x)^(2)-log_(10)x^(2))=|x-1|^(3)

Solve |x-1|^((log_(10)x)^(2)-log_(10)x^(2))=|x-1|^(3)

Solve for x: a) (log_(10)(x-3))/(log_(10)(x^(2)-21)) = 1/2 b) log(log x)+log(logx^(3)-2)= 0, where base of log is 10. c) log_(x)2. log_(2x)2 = log_(4x)2 d) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3. e) If 9^(1+logx)-3^(1+logx)-210=0 , where base of log is 3.