Home
Class 12
MATHS
If (log)(10)2=0. 30103 ,(log)(10)3=0. 47...

If `(log)_(10)2=0. 30103 ,(log)_(10)3=0. 47712 ,` then find the number of digits in `3^(12)x2^8dot`

Text Solution

Verified by Experts

Let ` y = 3^(12) xx 2^(8)`
` rArr log_(10) y = 12 log_(10) 3+ 8log_(10) 2`
` = 12 xx 0.47712 + 8 xx 0.30103`
` = 5.72544+ 2.40824`
` = 8.13368`
` :. ` Number of digits in y = 8 + 1 = 9.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If (log)_(10)2=0.30103,(log_(10)3=0.47712 then find the number of digits in 3^(12)*2^(8)

if log_(10)2= 0.3010 , then find the number of digits in (16)^(10)

If log_(10) 2 = 0.3010 " and " log_(10) 3 = 0.4771 , then find the number of integers in 6^(15)

* if log_(10)3=0.4771 then the number of digits in 3^(40) is =

If log_(10)2=0.30103,log_(10)3=0.47712, the number of digits in 3^(12)*2^(6)